Estimating logging residue volumes in the state of Idaho: preliminary predictive models

Erik Berg^a, Eric Simmons^a, Stan Zarnoch^b, Todd Morgan^a, Steve Hayes^a, Charles Gale^a

^aBureau of Business and Economic Research, University of Montana

bUSDA Forest Service Southern Research Station

Southern Research Station

ted States National Institute artment of of Food iculture and Agriculture

The need: Land managers seek to quantify the amount of woody residue left on-site after logging

Residue info. uses

- Biomass for energy production
- Nutrient recycling
- Fuels management
- Wildlife habitat
- Operational efficiency

Could logging utilization data be used to tailor logging residue estimates to the *logging site or stand* level?

Logging utilization studies have previously focused on the *state* level.

Enable managers to hone their prescriptions for *site-specific* residue conditions

Research question: Can a *site-level* model be developed to meet the residue information needs of managers?

- **Objectives:**
 - Predict residues (unutilized growing stock- not tops and limbs) at the *logging site*-level.
 - <u>Keep it simple</u>- use variables readily available to land managers.
 - <u>Reduce costs</u>- use existing data.

How to meet objectives

First, parameterize models at the *individual tree level*- gain information on important variables.

Methods

Focus initial efforts on Idaho: data from 815 felled green trees across 33 logging sites during 2008 and 2011 (25 trees per site)

- Tree measurements:
 outside bark diameter
 and section lengths
 16 feet
- Identify growing stock residue vs. mill delivered volume (cubic feet)

Methods

The response variable is the ratio "F3"

F3 is a function of only *bole wood*. F3 is *scalable*; beneficial for land managers.

F3, the "growing stock

residue factor"

Growing stock logging residue cubic foot volume (bole wood only)

Delivered cubic foot volume

Analysis Individual tree models-

 F3 vs. variables modeled with hierarchical linear mixed models.

- Model goodness of fit: rough analog to R²= .18 (n=814 trees)
- Why such a poor fit? Enormous variability from tree to tree.

Individual tree models, important variable:

- Tree diameter- substantial variability of F3 vs. DBH.

Individual tree models, important variable:

 <u>Merchandising</u>- Mechanized vs. by hand (chainsaw).

Individual tree models, important variable:

- <u>Taking pulp</u>- yes or no.
- Has an *enormous* impact on F3!
- Can substitute smallest top-end diameter of utilized bole instead of taking pulp.

Individual tree models, <u>important</u> <u>variable</u>:

Site quality

Bailey's Ecoregion Provincestrongly related to F3.

Results

- Individual tree; final model:

Variable	Change in F3 (residue/delivered volume)
MERCHANDISING METHOD- mechanized vs. chainsaw.	F3 decreases when timber is mechanically processed.
Mechanical falling also highly correlated to F3.	
DBH- fit as quadratic term	F3 decreases as DBH increases.
TAKING PULP?- yes or no	F3 <i>substantially</i> decreases when pulp is
(includes dbh*pulp interaction)	taken.
ECOREGION - north or southern Idaho (can subsitute habitat type series)	F3 decreases in north Idaho sites.

Results

Can we directly predict residue volume per tree and not the F3 ratio? Yes.

Residue volume per tree; model has same variables.

Site-level model

- F3 vs. *site-level* variables modeled with linear mixed models.
 - Goodness of fit: = .57 (n=33 sites)

Site-level model

-

Quadratic mean dbh- NOT related to F3!

Site-level F3: F3 vs. Quadratic Mean Dbh

Site-level model, important variable:

- <u>Falling method</u>- Mechanized vs. by hand (chainsaw).

- Site-level model- <u>important variable</u>: <u>Taking Pulp</u>- yes or no

- Has an enormous impact on F3!
- Can substitute smallest top-end diameter of utilized bole instead of taking pulp.

Results

Site-level model-

Variable	Change in F3 (residue/delivered volume)
Mechanical harvesting- yes or no	F3 decreases when timber is mechanically felled (e.g. feller buncher).
Taking pulp -yes or no (can substitute smallest end diam.)	F3 <i>substantially</i> decreases when pulp is taken.
Ecoregion - north or southern Idaho (can substitute habitat type series)	F3 decreases in north Idaho.

Conclusions

- Individual tree model: weak relationships, but gained insights about how to construct site-level models.
- <u>Site level model</u>: reasonable explanatory value and do not need a tree list to make residue predictions!
- <u>Models will change</u> with additional data as logging sites are sampled across Washington, Oregon, Idaho, and Montana.

Applications

- Land manager predictions of site-level residue volumes.
- Use models or data to calibrate predictions of activity fuels and woody debris (example- FVS activity fuels).
- Could adapt models to predict biomass.
- Build on other inventory procedures to create a comprehensive picture of fuels and available biomass feedstocks throughout the Northwest.

