LOGGING UTILIZATION IN ARIZONA AND NEW MEXICO, 2012-2017:

CURRENT AND PAST TRENDS

Eric A. Simmons, Todd A. Morgan, Steven W. Hayes, Erik C. Berg, and John D. Shaw.

U.S. Department of Agriculture, Forest Service
Rocky Mountain Research Station
Ft. Collins, Colorado

General Technical Report RMRS-GTR-XXX

June 12, 2017

Authors

Eric A. Simmons is a research associate, Todd A. Morgan is director of Forest Industry Research, Steven W. Hayes is a research forester, Erik C. Berg is a research forester, Bureau of Business and Economic Research, University of Montana, 32 Campus Drive, Missoula MT 59812; John D. Shaw is a biological scientist, Interior West Forest Inventory and Analysis Program, Rocky Mountain Research Station, USDA Forest Service, 507 25th Street, Ogden Utah 84401.

Produced in cooperation with the Bureau of Business and Economic Research, University of Montana, Missoula, Montana.

Cover photo:
ABSTRACT

A study of commercial timber-harvesting sites in Arizona and New Mexico was conducted during 2012 to 2017 to estimate growing-stock removals, characterize current tree utilization and logging operations, and assist with estimating the amount of woody biomass left on-site after harvesting. Fifty-four sample logging sites were selected within major geographic regions proportional to regional five-year timber harvests. A two-stage sampling method was used to compute state-level utilization factors from 1,358 felled trees. Results indicated that in Arizona, for every 1,000 cubic feet (CF) delivered to the mill, harvesting created 24 CF feet of growing-stock logging residue, and 38 CF of non-growing-stock material was delivered to the mill. This compared to 65 CF of growing-stock logging residue, and 20 CF of non-growing-stock utilized per 1,000 CF of mill-delivered volume in New Mexico. Different harvesting prescriptions and mill infrastructure contributed to the utilization differences between the two states. The 2012-2017 New Mexico utilization factors revealed an increase in growing-stock logging residue compared to the 1980s, a unique finding among western states. This outcome is likely attributable to declines in the state’s milling infrastructure, particularly facilities with the ability to use smaller diameter material.

Key words: forest inventory, growing-stock removals, logging residue, removals factors, timber harvest
INTRODUCTION

Forest and mill managers in the Southwest desire current information on the characteristics and effects of timber harvesting on forest inventory. They may wish to know how much woody material remains in the forest after commercial logging operations to understand fuel loads or to predict potential feedstock for woody biomass energy. Likewise, the characteristics of harvested trees (e.g., dbh\(^1\), total tree height, or species mix), harvesting methods (e.g., mechanical vs. hand-felling, or merchandising at the stump vs. at the landing), and logging residue may be of interest for forest planning or business development purposes. The information developed from logging utilization studies can meet these needs.

Logging utilization studies identify material removed from forest inventory during commercial timber harvest activities and provide the data used to develop logging utilization factors. These factors quantify the amount of growing-stock\(^2\) volume (fig. 1) removed from inventory and distinguish it as either timber products (e.g., sawlogs, fuelwood) delivered to processing facilities or as logging residue, which is left in the forest or at the landing and is not used. Other factors quantify the volume of non-growing stock material utilized for products. These logging utilization factors are used in the calculation of logging residue volumes in the Timber Products Output (TPO) database (http://srsfia2.fs.fed.us/php/tpo_2009/tpo_rpa_int1.php) maintained by the Forest Inventory and Analysis (FIA) Program of the USDA Forest Service. The factors can be applied to projected levels of timber harvest at various geographic scales to provide estimates of growing-stock removals from forest inventory. Logging utilization studies also characterize timber harvest activities and equipment and can provide estimates of the distributions of trees and volume harvested by species, size, and logging method.
When conducted in a consistent manner, these studies can provide a substantial amount of information about changes in timber harvesting practices and logging residue through time and differences between states or regions of the country. Recent logging utilization studies provided updated residue and harvesting information for Idaho (Simmons et al. 2014b), Oregon
and Washington (Simmons et al. 2016), and Montana (Berg et al. in Press). However, the most recent studies for Arizona and New Mexico are nearly 30 years old (McLain 1988, 1989). This study and others like it (Bentley and Johnson 2004; Morgan et al. 2005; Morgan and Spoelma 2008; Simmons et al. 2014b, 2016; Berg et al. in Press) allow historic and between-state comparisons of timber harvested for products, the associated logging residue, and the impacts on growing-stock inventory.

To update regional timber harvesting and logging residue information, a study of logging sites across Arizona and New Mexico was conducted from 2012 through 2017. This study was designed to quantify the creation of logging residue from commercial, green (live) tree timber harvesting at the state level, and characterize harvested trees and harvesting activities within each state. The specific objectives were to:

1. characterize each state’s timber harvest by tree species and dbh;

2. characterize each state’s timber harvest operations by felling, yarding, and merchandising methods;

3. compute current logging utilization factors for each state to express:

 a. volumes of growing-stock logging residue generated per 1,000 CF of mill-delivered volume,

 b. proportions of mill-delivered volume coming from growing-stock vs. non-growing stock portions of harvested trees, and

 c. total removals (i.e., timber product and logging residue) from growing stock.
Recent Arizona and New Mexico Timber Harvests

There are nearly 7.3 million acres of non-reserved timberland\(^3\) potentially available for timber harvest activities in Arizona and New Mexico (table 1; Miles 2017). However, neither the timber resource nor harvesting activities are evenly distributed across the states. Wood product markets and forest policy issues have influenced the geographic and ownership sources of harvested timber as well as annual harvest volumes.

<table>
<thead>
<tr>
<th>Ownership class</th>
<th>Thousand acres</th>
<th>Percentage</th>
<th>Thousand acres</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Forest</td>
<td>2,160</td>
<td>71.7%</td>
<td>2,662</td>
<td>62.2%</td>
</tr>
<tr>
<td>Undifferentiated private(^b)</td>
<td>812</td>
<td>27.0%</td>
<td>1,449</td>
<td>33.9%</td>
</tr>
<tr>
<td>State</td>
<td>7</td>
<td>0.2%</td>
<td>129</td>
<td>3.0%</td>
</tr>
<tr>
<td>Bureau of Land Management</td>
<td>6</td>
<td>0.2%</td>
<td>38</td>
<td>0.9%</td>
</tr>
<tr>
<td>Other public</td>
<td>27</td>
<td>0.9%</td>
<td>0</td>
<td>0.0%</td>
</tr>
<tr>
<td>All owners</td>
<td>3,012</td>
<td>100%</td>
<td>4,279</td>
<td>100%</td>
</tr>
</tbody>
</table>

\(^a\)Timberland is forest land that is producing or capable of producing more than 20 cubic feet of wood per acre per year at culmination of mean annual increment and not withdrawn from harvest by statute or administrative regulation (Helms 1998).

\(^b\)Undifferentiated private includes industrial private, non-industrial private, Tribal, NGOs and unincorporated local partnership/association/clubs.

Annual timber harvest volumes in Arizona and New Mexico combined have ranged from nearly 550 million board feet (MMBF) Scribner in the mid-1980s to current levels of around 100 MMBF (Sorenson et al. 2016; fig. 2). Since the majority of timberlands in both states are National Forest lands, harvests have been predominantly from these public lands. Steep declines in total timber harvest volumes and milling capacity in the Southwest were associated with the reduction of Federal harvest programs beginning in the early 1990s (Keegan et al. 2006; Morgan et al. 2006) and were exacerbated by the Great Recession, housing bust, and poor wood product markets from 2007 through 2011 (Keegan et al. 2012; Sorenson et al. 2016).
Forest management strategies are similar between Arizona and New Mexico, but milling and logging infrastructures vary. Northern Arizona’s National Forest stewardship and restoration projects, most notably the White Mountain Stewardship Project (WMSP) and Four Forest Restoration Initiative (4FRI) Collaborative Forest Landscape Restoration Project (CFLRP), use treatments that combine the removal of larger trees and thinning small-diameter trees with whole tree utilization. This effort is designed to restore ecosystem health, improve wildlife habitat, and reduce the risk of uncharacteristic wildland fires (4FRI 2017). Although projects like the Zuni Mountains Stewardship and Southwest Jemez Mountains CFLRP have similar objectives and on the ground treatments, there is very little whole-tree utilization capability for commercial wood
products in New Mexico. Arizona’s timber-processing capacity of approximately 139 MMBF Scribner (Sorenson and others 2016) includes a few high volume sawmills with the capability of utilizing smaller diameter logs, whereas most of New Mexico’s 61 MMBF Scribner of timber-processing capacity is concentrated in mills that rely on larger diameter logs. New Mexico’s wood products industry is undertaking improvements to increase the utilization of smaller diameter trees, however many efforts were still in planning or development stages at the time of this study. In contrast, logging infrastructure in Arizona is capable of grinding/chipping whole trees at the logging site, and there large-capacity facilities that use the raw material for biomass energy, heating, and soil amendment products.

METHODS

Sample Design

The target population for this study was active logging sites in Arizona and New Mexico where green (live) trees were being commercially harvested for conversion into wood products, primarily lumber. Because of the need to measure harvesting impacts on growing stock, only green-tree sites were targeted. Salvage sales, with many or most trees dead prior to harvest, were not included. Historically, the majority (65 to 95 percent) of annual timber harvests in both states have been used for lumber and other sawn products like timbers and pallet stock (Keegan et al. 2001a, b; Morgan et al. 2006; Hayes et al. 2012; Sorenson et al. 2016). Other timber products (e.g., logs for posts, poles, vigas and latillas) are commonly merchandised with sawlogs. Thus, sites were identified where green sawlogs were the primary products to be harvested, as these
would account for the vast majority of annual harvest volume while also capturing some volume harvested for other products.

The authors sought a sample of felled trees within logging sites (the primary sampling unit) that would provide data to estimate logging utilization factors expressed as the ratios of means at the state level (Zarnoch et al. 2004). The sampling protocol should yield ratios and attendant standard errors computed in the same manner as other logging utilization investigations to ensure comparability of results. Most state-level logging utilization investigations have reported factors and standard errors using design-based methods without selecting sample sites at random from a list of all active logging sites (McClain 1988, 1989; Simmons et al. 2014b, 2016). As Morgan and Spoelma (2008) described, it is not possible to know in advance the full population of logging sites in a state for a given year and simply draw a sample of those sites to measure. But without a sampling frame from which to draw samples at random, design-based sampling could bias parameter estimates and compromise any ability to make population inferences (Lohr 2009). Berg et al. (2015) analyzed the potential bias in design-based sampling without the use of a sampling frame and found that the computed design-based residue ratios exhibited less than 0.5 percent bias. In the current study, as in other investigations, the authors could not obtain a list of all active sites; sample sites were not selected at random.

A two-stage sampling protocol was used to select logging sites and trees within sites for measurement (Levy and Lemeshow 1999). The number of logging sites in an area (e.g., county or multi-county region) was assumed to be proportional to harvest volume. Sample sites were thus selected proportional to 5-year timber harvest volumes. Logging sites with active harvesting of green trees for commercial products served as the stage 1 sampling units. Annual timber-harvest summaries (USDA Forest Service 2011-2015) provided the geographic location (i.e.,
county or National Forest) and ownerships of potential sample logging sites (fig. 3). Timberland owners and sawmills were contacted periodically throughout the study period to identify when and where logging activities would be occurring and to request access to logging sites to conduct measurements.

The stage 2 sampling units consisted of felled trees at each selected logging site. To qualify as a potential measurement tree, it had to be growing stock (i.e., live prior to harvest, with a dbh ≥ 5.0 inches, and meeting minimum merchantability standards) and the entire stem, including the stump and top, had to be measureable (Morgan and Spoelma 2008; Woudenberg et al. 2010). Sample sizes for stage 1 and 2 sample units were guided by standard errors achieved in previous utilization studies. Zarnoch et al. (2004) found that standard errors for utilization ratios dropped substantially by increasing the number of measured logging sites from 10 to 20. Previous logging utilization studies in Montana, California, Idaho, Oregon and Washington garnered low standard errors by measuring 25 to 35 trees on each of 30 to 35 logging sites per state (Morgan et al. 2005; Morgan and Spoelma 2008; Simmons et al. 2014b, 2016). Logging utilization studies conducted by the USDA Forest Service Southern Research Station (Bentley and Johnson 2004; Zarnoch et al. 2004) suggested that a sample of 30 to 50 logging sites with 20 to 35 felled trees measured at each logging site would be sufficient to determine state-level utilization factors. Based on these guidelines the authors decided to sample 20 to 30 felled trees located within each of 20 to 30 active logging sites throughout Arizona and New Mexico.
Figure 3— Arizona and New Mexico logging utilization sites, 2012-2017.

Data Collection

Logging contractors or foresters at each selected site were contacted three to five days prior to site visits to confirm access and outline protocols to ensure field crew safety. At each logging site, they provided information on tree species, products merchandised, and preferred and acceptable log lengths and diameters delivered to receiving mill(s). Field crews recorded this
information along with the date, county, land ownership class, felling method, yarding/skidding method, log merchandising location and method, logging contractor name, equipment in use, and names of receiving mill(s).

Field crews selected felled trees meeting the specified requirements at random. Individual trees or piles accumulated for skidding were scattered throughout the logging site, depending on the operation and equipment used. A unique identification number was assigned to each measurement tree, and species, dbh, and primary product (e.g., sawlog, veneer log, etc.) information were recorded. Diameter and section length measurements were taken at the cut stump, at one foot above ground level (uphill side of the tree), at dbh, the end of the first 16-foot log, at the 7.0-inch diameter outside bark (dob), at the 4.0-inch dob point (end of growing stock), at the end-of-utilization and at the tip of the tree. Each tree had diameter (in 0.1 inch increments) and section length (in 0.1 foot increments) measurements recorded with a maximum section length of 16 feet. Thus, for each bole section, lower and upper dob and length were recorded. The percent cubic cull for each section was also recorded and each bole section was identified as utilized (delivered to the mill) or unutilized (logging residue). The timber product type for each utilized section was also recorded.

A minimum of 20 felled live trees were measured at each of 54 logging sites – 30 in Arizona, and 24 in New Mexico – from 2012 to 2017. These 54 active logging sites were spread across both states and a total of 1,358 felled trees – 750 in Arizona, and 608 in New Mexico – were measured.

Data Analysis
Following the methods of Morgan and Spoelma (2008), and Simmons et al. (2014b, 2016), cubic volumes for more than 11,600 individual tree sections were calculated using Smalian’s formula (Avery and Burkhart 1994). Section volumes were summed for each tree by category (e.g., utilized vs. unutilized stump, bole, and upper stem sections of the trees), and utilization factors were calculated for each tree and site. Logging residue factors, standard errors, and 95 percent confidence intervals (CIs) were computed at the state level for Arizona and New Mexico based on the two-stage sampling design, using the ratios of means estimator (Zarnoch et al. 2004) obtained from SAS PROC SURVEYMEANS (SAS 2013). Residue factors were also calculated for individual species, species groups, and for each tree dbh class. Characteristics of the felled trees, harvest operations, and utilization factors were then summarized and compared with historic Arizona and New Mexico logging utilization studies and with recent studies from other western states.

RESULTS AND DISCUSSION

Characteristics of Logging Sites and Operations

Since the largest share of commercial logging in both states occurs on the National Forest ownership class (Sorenson et al. 2016), the sample sites were selected proportional to geographic regions associated with National Forests (table 2). Limited harvesting activity and availability of logging sites in the Santa Fe National Forest (in New Mexico) and National Forests south of the Mogollon Rim (in Arizona) resulted in somewhat fewer sites being measured relative to recent harvest volumes in those regions.
Harvesting methods included hand and mechanical felling and merchandising (table 3). Mechanical felling methods included the use of a “hot saw” or equipment with accumulating heads such as a feller-buncher. Hand felling and merchandising was done with chainsaws. Only ground based (no cable or sky-line) skidding/yarding systems were observed in both states. Trees and or logs were mostly yarded with rubber-tired skidders and rarely with dozers equipped with either a grapple or a winch with chokers. Trees were skidded both tree- and log-length. Mechanical merchandising methods included the use of stroke (slide-boom) de-limbers and dangle-head processors.

In Arizona, trees were mechanically felled on all but two of the sites; while in New Mexico timber was hand-felled with chainsaws on 42 percent of the sites. Cable yarding was not
employed in either state since moderate slopes and soils were conducive to the use of ground based yarding systems. In both states, timber was skidded tree-length on most sites, but New Mexico had a higher proportion (33 percent) of sites skidded log length. The processing or merchandising of trees at landings with mechanical systems was employed on the majority of sites in both states, but New Mexico had substantially more sites (33 percent) where trees were merchandised in the unit and over 40 percent of sites with merchandising done by hand. The more frequent use of chainsaws for felling and merchandising in New Mexico reflected the smaller and less mechanized forest industry in a state with relatively low timber harvest levels and limited timber-processing capacity. It also suggested less capability among New Mexico facilities for using smaller-diameter material, which is often more expensive to process and requires very efficient processing of large volumes.

Characteristics of Felled Trees

In Arizona, the sample of felled trees ranged from 5.0 to 26.7 inches dbh, and the New Mexico trees ranged from 6.4 to 27.1 inches dbh. The median diameter tree by mill-delivered volume was 14.2 inches dbh for Arizona and 14.8 inches dbh for New Mexico. Half of the trees measured in Arizona were ≤ 12.4 inches dbh, but they accounted for about 25 percent of the utilized volume and 31 percent of growing-stock logging residue. Half of the harvested trees in New Mexico were ≤ 12.4 inches dbh, and accounted for about 24 percent of the mill-delivered volume and 44 percent of growing-stock logging residue volume. The higher proportion of growing-stock logging residue from trees ≤ 12.4 inches dbh in New Mexico was due to only sawlogs being merchandised in New Mexico, whereas Arizona had numerous sites with whole-tree utilization, including use for biomass energy.
In Arizona, trees < 15 inches dbh accounted for roughly 59 percent of mill-delivered volume and 60 percent of growing-stock logging residue (table 4). In New Mexico, trees < 15 inches dbh accounted for about 52 percent of mill-delivered volume but 74 percent of growing-stock logging residue.
stock logging residue, indicating more residue from and less utilization of smaller trees in New Mexico compared to Arizona.

As in Idaho (Simmons 2014b), timber harvest in Arizona and New Mexico shifted dramatically from larger diameter trees to smaller trees during the past three decades. In the late 1980s, trees ≥ 24 inches dbh provided between 40 and 60 percent of the mill-delivered volume (McLain 1988, 1989). In this 2012-2017 study, trees in the same diameter class provided less than 5 percent of the mill-delivered volume (fig. 4). The western sawmill industry’s increased use of smaller trees and declining use of large trees has been noted throughout the western United States (Keegan et al. 2010). In the Southwest, this trend is likely due to perceived reductions in the inventory of larger-diameter trees, restoration or fuel reduction prescriptions that focus on removing smaller trees, and harvest diameter limits (e.g., no trees > 16 inches dbh allowed to be cut) on some public lands. In other regions (e.g., western Oregon and Washington), the industry has largely shifted to shorter rotation (e.g., 30 to 40 year) plantation-grown trees.
Ponderosa pine (*Pinus ponderosa* var. *scopulorum* Engelm.) was the most sampled and harvested tree species in both states, followed by Douglas-fir (*Pseudotsuga menziesii* (Mirb.) Franco). In Arizona, ponderosa pine comprised over 80 percent of the logging utilization sample and 2012 harvest volume from the Sorenson et al. (2016) mill study (table 5). Douglas-fir and other species were somewhat under-represented in the Arizona logging utilization sample, compared to the 2012 harvest volume. In New Mexico, the species mix of the logging utilization sample and 2012 harvest volume were more similar, with both capturing over 50 percent ponderosa pine and 19 percent or more of Douglas-fir and other softwoods including Spruce (*Picea spp*), White fir (*Abies concolor* (Gord. & Glend.) Lindl. ex Hildebr.), and Southwestern white pine (*Pinus strobiformis* Engelm).
Statewide Logging Utilization Factors

Logging utilization factors are state-wide ratios of removals volumes versus mill-delivered volumes (Morgan and Spoelma 2008, Simmons et al. 2014b, 2016). The logging utilization factors calculated in this 2012-2017 study for Arizona indicated that for each 1,000 CF delivered to mills: 38 CF of non-growing stock material (stumps cut below 1-foot in height and tops utilized beyond the 4-inch dob) was utilized, 962 CF of growing-stock material was utilized, 24 CF of growing-stock material was left in the forest or at the landing as logging residue, and commercial timber harvesting removed a total of 986 CF of growing-stock volume (table 6). New Mexico removals factors were considerably different from Arizona. For each 1,000 CF delivered to mills from New Mexico logging sites: 20 CF came from of non-growing

Table 5—Number of sampled trees, percent of sampled tree mill-delivered volume, percent of 2012 statewide timber harvest volume, percent of growing-stock logging residue volume, and growing-stock residue as a percent of mill-delivered cubic foot (CF) volume by species and state, 2012-2017.

<table>
<thead>
<tr>
<th>Species</th>
<th>Percent of sampled trees</th>
<th>Percent of sampled tree mill-delivered CF volume</th>
<th>Percent of 2012 timber harvest volume (MBF, Scribner)a</th>
<th>Percent of growing-stock logging residue CF volume</th>
<th>Residue as a percent of mill-delivered CF volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arizona</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ponderosa pine</td>
<td>96.1</td>
<td>97.0</td>
<td>83.6</td>
<td>91.6</td>
<td>2.3</td>
</tr>
<tr>
<td>Douglas-fir</td>
<td>3.9</td>
<td>3.0</td>
<td>8.1</td>
<td>8.4</td>
<td>6.8</td>
</tr>
<tr>
<td>Other species</td>
<td>0.0</td>
<td>0.0</td>
<td>8.3</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>2.4</td>
</tr>
<tr>
<td>New Mexico</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ponderosa pine</td>
<td>59.9</td>
<td>56.7</td>
<td>54.0</td>
<td>59.7</td>
<td>6.9</td>
</tr>
<tr>
<td>Douglas-fir</td>
<td>22.0</td>
<td>22.5</td>
<td>19.0</td>
<td>23.2</td>
<td>6.8</td>
</tr>
<tr>
<td>Other species</td>
<td>18.1</td>
<td>20.8</td>
<td>27.0</td>
<td>17.1</td>
<td>5.4</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>6.5</td>
</tr>
</tbody>
</table>

a Sorenson et al. 2016.

Statewide Logging Utilization Factors

Logging utilization factors are state-wide ratios of removals volumes versus mill-delivered volumes (Morgan and Spoelma 2008, Simmons et al. 2014b, 2016). The logging utilization factors calculated in this 2012-2017 study for Arizona indicated that for each 1,000 CF delivered to mills: 38 CF of non-growing stock material (stumps cut below 1-foot in height and tops utilized beyond the 4-inch dob) was utilized, 962 CF of growing-stock material was utilized, 24 CF of growing-stock material was left in the forest or at the landing as logging residue, and commercial timber harvesting removed a total of 986 CF of growing-stock volume (table 6). New Mexico removals factors were considerably different from Arizona. For each 1,000 CF delivered to mills from New Mexico logging sites: 20 CF came from of non-growing
stock material, 980 CF of growing stock was utilized, 65 CF of growing-stock was left on site as logging residue, and commercial harvest removed a total of 1,045 CF of growing-stock volume.

Table 6—Arizona and New Mexico logging utilization factors, 2012-2017.

<table>
<thead>
<tr>
<th>Arizona factor</th>
<th>Lower bound (95% CI)</th>
<th>Estimate (ratio of means)</th>
<th>Upper bound (95% CI)</th>
<th>Standard error</th>
<th>Cubic feet (CF) per 1,000 CF mill-delivered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-growing stock product delivered to mills</td>
<td>0.0302</td>
<td>0.0385</td>
<td>0.0467</td>
<td>0.0040</td>
<td>38</td>
</tr>
<tr>
<td>(utilized non-growing stock + total utilized)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Growing-stock product delivered to mills</td>
<td>0.9533</td>
<td>0.9615</td>
<td>0.9698</td>
<td>0.0040</td>
<td>962</td>
</tr>
<tr>
<td>(utilized growing stock + total utilized)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Growing-stock logging residue</td>
<td>0.0135</td>
<td>0.0244</td>
<td>0.0353</td>
<td>0.0053</td>
<td>24</td>
</tr>
<tr>
<td>(unutilized growing stock + total utilized)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Removals from growing stock</td>
<td>0.9702</td>
<td>0.9860</td>
<td>1.0018</td>
<td>0.0077</td>
<td>986</td>
</tr>
<tr>
<td>((utilized + unutilized growing stock) + total utilized)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>New Mexico factor</th>
<th>Lower bound (95% CI)</th>
<th>Estimate (ratio of means)</th>
<th>Upper bound (95% CI)</th>
<th>Standard error</th>
<th>Cubic feet (CF) per 1,000 CF mill-delivered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-growing stock product delivered to mills</td>
<td>0.0142</td>
<td>0.0201</td>
<td>0.0259</td>
<td>0.0028</td>
<td>20</td>
</tr>
<tr>
<td>(utilized non-growing stock + total utilized)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Growing-stock product delivered to mills</td>
<td>0.9741</td>
<td>0.9799</td>
<td>0.9858</td>
<td>0.0028</td>
<td>980</td>
</tr>
<tr>
<td>(utilized growing stock + total utilized)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Growing-stock logging residue</td>
<td>0.0495</td>
<td>0.0654</td>
<td>0.0814</td>
<td>0.0077</td>
<td>65</td>
</tr>
<tr>
<td>(unutilized growing stock + total utilized)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Removals from growing stock</td>
<td>1.0296</td>
<td>1.0454</td>
<td>1.0612</td>
<td>0.0077</td>
<td>1045</td>
</tr>
<tr>
<td>((utilized + unutilized growing stock) + total utilized)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The lower growing-stock logging residue factor (24 CF) in Arizona compared to (65 CF) New Mexico and the somewhat higher non-growing stock delivered to mill factor (38 CF in Arizona vs. 20 in New Mexico) reflected the types and capabilities of processing facilities operating in each state, as well as timber harvesting prescriptions. In Arizona, about half of the sites were restoration/stewardship treatments requiring whole-tree removal, and trees were merchandised as sawlogs for sawmills with most of the remaining material processed into fuelwood for a biomass power plant in Snowflake. Sawmills in Arizona also indicated using sawlogs with smaller top diameters than sawmills in New Mexico. In New Mexico, there were no sites with a whole-tree removal requirement, and timber was merchandised almost
exclusively for sawlogs. Without a local biomass facility, much more growing-stock material was left as logging residue and less non-growing stock material was utilized.

Consistent with other studies (Morgan and Spoelma 2008, Simmons et al. 2014b, 2016), smaller trees in both Arizona and New Mexico tended to produce more growing-stock logging residue per 1,000 CF of mill-delivered volume than larger trees (fig. 5). Overall, the growing-stock residue factor was higher across all tree sizes (except the 24+ inch dbh class) in New Mexico than in Arizona, and the residue factors for the smallest trees (in the 6 to 10 inch dbh classes) were substantially higher in New Mexico than in Arizona. With only eight trees in the 24+ inch class in Arizona and two trees in New Mexico, the sample size was too small to determine a conclusive cause for higher residue factors of those largest trees.

The differences in utilization factors between the two states were related to each state’s milling infrastructure. Less ability to process smaller material, whether at biomass facilities or sawmills capable of using logs with a smaller top diameter, translated into lower utilization of the upper portions of trees. Thus the state-to-state differences in residue factors for trees in the 6 to 10 inch dbh class largely reflected differences in felled-tree small end utilized diameters. The average diameter for end of utilization in Arizona was 2.6 inches dob compared to 6.1 inches dob in New Mexico. These findings were consistent with Berg et al. (2016), which found that growing-stock residue ratios increased exponentially as the diameter at the end of utilization increased.
Figure 5 a,b— Distribution of mill delivered volume, harvested trees, and residue per cubic foot (CF) of mill delivered volume by tree dbh and state, 2012-2017.
In Arizona, 3.8 percent of the harvested bole volume (i.e., portions of the tree from the cut stump to the tip of the tree, excluding branches) remained in the woods as logging residue (fig.6). In New Mexico, 8.6 percent of the harvested bole volume remained in the woods as logging residue. In Arizona, 4.6 percent of the volume delivered to the mill came from non-growing stock portions of trees, compared to just 1.8 percent in New Mexico. Most of the additional non-growing stock volume utilized in Arizona came from upper portions of trees – beyond the 6-inch dob average end of utilization for trees harvested in New Mexico.

Figure 6—Arizona and New Mexico harvested tree bole utilization, 2012-2017.
Logging Utilization Factors through Time

Logging utilization studies in other western states have consistently found that the growing-stock residue factor has decreased and non-growing stock delivered to mill factor has increased over time (Morgan et al. 2005; Simmons et al. 2014b; Berg et al. In Press), indicating higher overall utilization of harvested trees. These trends held for Arizona, where the 2012-2017 growing-stock residue factor was one-third of what it was in 1985 (McLain 1988) and less than one-fifth of what it was in 1968 (Setzer et al. 1970). In Arizona, the non-growing stock delivered to mill factor also increased from zero to 38 CF (table 7). New Mexico, however, did not have increased utilization compared to the 1980s.

<table>
<thead>
<tr>
<th>Factor</th>
<th>1968</th>
<th>1985</th>
<th>2012-17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arizona</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-growing stock product delivered to mills</td>
<td>0</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>Growing-stock product delivered to mills</td>
<td>1,000</td>
<td>962</td>
<td></td>
</tr>
<tr>
<td>Growing-stock logging residue</td>
<td>122</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Removals from growing stock</td>
<td>1,122</td>
<td>986</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Factor</th>
<th>1968</th>
<th>1987</th>
<th>2012-17</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Mexico</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-growing stock product delivered to mills</td>
<td>4</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Growing-stock product delivered to mills</td>
<td>1,000</td>
<td>980</td>
<td></td>
</tr>
<tr>
<td>Growing-stock logging residue</td>
<td>122</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>Removals from growing stock</td>
<td>1,122</td>
<td>1,045</td>
<td></td>
</tr>
</tbody>
</table>

Setzer et al. 1970; McLain 1988; McLain 1989.

In New Mexico, there was an increase in non-growing stock delivered to mills (from 4 CF to 20 CF per 1,000 CF) since the 1980s, but the 2012-2017 growing-stock residue factor was
50 percent higher than in 1987 (McLain 1989). This is the first instance of an increased growing-stock residue factor through time among western states. New Mexico, like Arizona and most of the western United States, had a reduction in timber-processing capacity and the number of facilities operating since the 1980s (Keegan et al. 2006; McIver et al. 2013; Simmons et al. 2014a; Sorenson et al. 2016). Despite this, logging utilization increased in other states, and the use of smaller-diameter material by sawmills generally increased (Keegan et al. 2010). The increase in New Mexico’s growing-stock residue factor suggests that the ability to process smaller-diameter material in New Mexico declined with the closure of many sawmills, while remaining facilities are in the process of transitioning to using smaller logs, and large capacity biomass utilizing facilities have not been developed.

CONCLUSIONS

Arizona and New Mexico logging utilization factors have varied substantially through time. Progressive reductions in New Mexico timber-processing capacity and attendant demand for timber, as well as varied wood products infrastructures between the two states have created major differences in logging utilization factors. In particular, New Mexico’s growing-stock residue factor was 170 percent greater than Arizona’s in the current study. This largely resulted from the greater quantities of upper stem bole material that were left unutilized on New Mexico compared to Arizona logging sites.

This logging utilization study and resulting factors can help Southwestern forest managers understand the impacts of commercial timber harvesting on growing-stock inventories and woody residue volumes potentially available for bioenergy uses. Likewise, they can provide
measures and insights into how the milling infrastructure in each state affects the utilization of timber. Variables including logging method, species, tree size (i.e., dbh), and the presence/absence of an industry (e.g., pulp or biomass energy) that can use smaller diameter material can have profound impacts on the production of logging residue.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the financial support of the USDA Forest Service, Rocky Mountain Research Station, Forest Inventory and Analysis Program, Ogden, Utah. Other cooperators included the USDA Forest Service Apache-Sitgreaves, Carson, Cibola, Coconino, Gila, Kaibab, Lincoln, and Santa Fe National Forests, district timber staff, private landowners, foresters, mill operators, and loggers. Without their assistance this analysis could not have been accomplished.

LITERATURE CITED

END NOTES

1 Diameter at breast height (dbh) is the tree’s diameter outside bark, measured at 4.5 feet above ground on the uphill side.

2 Growing stock is defined as all live trees of commercial species that meet minimum merchantability standards or have the potential to meet these merchantability standards. In general, these trees have at least one solid 8-foot section, are reasonably free of form defect on the merchantable bole, and 26 percent or more of the volume is merchantable.

3 Timberland is defined as unreserved forest land capable of producing 20 cubic feet per acre per year of wood from trees classified as a timber species on forest land designated as a timber forest type.

4 Vigas are peeled logs used as exposed ceiling joists or beams in traditional Southwestern style building. Latillas are smaller-diameter peeled logs running perpendicular to or between vigas.

5 The use of trade or firm names in this publication is for reader information and does not imply endorsement by the U.S. Department of Agriculture of any product or service.