# The Economic Implications of Implementing the EPA Clean Power Plan in Montana

Final Report November 2015



Produced for: NorthWestern Energy

Produced by: Bureau of Business and Economic Research University of Montana Missoula, MT 59812

#### Acknowledgements

The authors of this study would like to acknowledge the cooperation of NorthWestern Energy who took the time from their busy jobs to make data available for this study. All errors, omissions, and conclusions in this report are, of course, our own.

# **Table of Contents**

| Executive Summary                                             | 2  |
|---------------------------------------------------------------|----|
| Summary of Findings                                           | 2  |
| The Direct Effects of the Clean Power Plan                    | 7  |
| Estimates of Economic Impacts                                 | 8  |
| Conclusion                                                    | 9  |
| About the BBER                                                | 10 |
| 1. Introduction and Overview                                  | 11 |
| Montana's Compliance Options                                  | 12 |
| The Focus of This Study                                       | 14 |
| 2. Implementation of the Clean Power Plan in Montana          | 15 |
| The Compliance Scenario – Retirement of Coal-Fired Generation | 15 |
| Discussion                                                    | 16 |
| The Compliance Scenario – Replacement Generation              | 17 |
| Alternative Scenario Formulation                              |    |
| Discussion                                                    | 20 |
| 3. Policy Analysis with the REMI Model                        | 21 |
| 4. The Economic Impacts of the Clean Power Plan in Montana    |    |
| Summary of Findings                                           | 24 |
| Employment Impacts                                            | 26 |
| Impacts on Business Gross Receipts                            | 29 |
| Personal Income and Compensation Impacts                      | 31 |
| Tax and Non-Tax Revenue Impacts                               | 32 |
| Population Impacts                                            | 35 |
| Consumption Impacts                                           |    |
| Summary                                                       |    |
| 5. Summary and Conclusions                                    | 39 |
| 6. References                                                 | 40 |
| Appendix A: REMI Tables                                       | 42 |
| Appendix B: TSEP Projects Funded History by County            | 74 |

The Economic Implications of Implementing the EPA Clean Power Plan in Montana

Executive Summary

On August 3, 2015, the U.S. Environmental Protection Agency released its final rule for its Clean Power Plan directed at reducing emissions of greenhouse gases. As was the case with the preliminary rules announced in June 2014, those rules require states, including Montana, to submit plans that would result in reductions in state carbon emissions from new and existing electric generation facilities that hit a specified target by year 2030.

While there is in principle some flexibility in how states construct plans to comply with the emission targets set forth in the rule, the final rule's state-specific mandates for CO2 reductions for Montana power producers have been set at a level that drastically reduces the choice set for our state. A comparison of CO2 emission rate targets for year 2030 to their baseline levels by state shows Montana's 47 percent reduction to be the highest of any state included in the rule.

The EPA Clean Power Plan final rule – often referred to as 111(d) for the portion of the Clean Air Act that is cited as giving the Agency the authority for its actions – is the most significant economic event to occur in Montana in more than thirty years. Compliance with the rule raises the very real prospect of the premature closure and decommissioning of the Colstrip Steam Electric Station, a coal-fired generator in southeast Montana that is the largest industrial facility in the state. It will also require significant new investment in replacement generation assets, as well as in the transmission system improvement necessary to support them. As the regulation rolls out nationwide, it will significantly impact the price of wholesale and retail electric power.

As a means of helping Montana policymakers, businesses and households understand the implications of 111(d), NorthWestern Energy contracted with the Bureau of Business and Economic Research at the University of Montana to conduct an economic analysis of the impacts on the state economy that could result from actions necessary to comply with the rule. The findings of that analysis are contained in this report.

#### **Summary of Findings**

While Montana's final compliance plan for 111(d) is not due to be submitted to the EPA until next year, any compliance scenario will contain three changes from the status quo:

- the closure and decommissioning of existing generation facilities in Montana, with consequences for upstream (e.g., coal mine) and downstream (transmission line) assets, required to reduce CO2 emission rates in compliance with the rule;
- the construction and operation of new, less CO2-intensive generating facilities, with the necessary infrastructure (pipelines, transmission system improvements) to maintain the safe, reliable provision of electric power to Montana businesses and households, and
- changes in wholesale and retail electricity markets that reflect capital investments and the changing mix of generation regionally and nationally.

The size of the required CO2 reductions imposed by the Clean Power Plan, and limited options available raise the prospect that compliance will result in the complete closure of the Colstrip generating station. Indeed, the scenarios that leave portions of that facility in operation hinge on outcomes – such as the availability of low-cost emissions credits in sufficient quantities from markets that do not exist today – depend in part on outcomes and events beyond our control. Thus the compliance scenario presented here is timely and relevant.

We have developed a specific scenario of compliance with 111(d) that contains each of the these components listed above. It is in conformance with the rule, which requires changes in existing facilities by the year 2022, and reductions in CO2 emission rates in conformance with the targets over the subsequent 8 year period. It provides for new generation and other infrastructure that replaces power that is currently supplied at facilities that would be shutdown, decommissioned, and remediated to conform with 111(d). And it reflects third-party projections of price changes that would result as the targets set by 111(d) come into effect regionally and nationally.

The BBER used its economic model, leased from Regional Economic Models, Inc. (REMI), and specifically calibrated to the Montana economy, to project two economic futures for our state. The first is a reference, status quo projection. The second is a projection of a future under a scenario of compliance with 111(d). This future reflects all of the actions required to comply with the final rule, as well as changes in wholesale and retail electricity markets that result. These changes bring the economy to a different, lower, resting point as investment flows, population, and spending by businesses, governments and households respond.

| Impacts Summary         |               |                 |          |          |  |
|-------------------------|---------------|-----------------|----------|----------|--|
|                         |               | Impacts by Year |          |          |  |
| Category                | Units         | 2025            | 2035     | 2045     |  |
| Total Employment        | Jobs          | -7,137          | -5,381   | -3,715   |  |
| Personal Income         | \$ Mill./Year | -515.9          | -556.3   | -482.2   |  |
| Disposable Pers. Income | \$ Mill./Year | -440.6          | -481.2   | -417.7   |  |
| Selected State Revenues | \$ Mill./Year | -145.6          | -165.8   | -152.0   |  |
| Property Tax Revenues   | \$ Mill./Year | -44.4           | -74.5    | -78.5    |  |
| Output                  | \$ Mill./Year | -1,511.7        | -1,407.4 | -1,268.0 |  |
| Population              | People        | -5,211          | -10,731  | -9,207   |  |
|                         |               |                 |          |          |  |

# The Economic Implications of Implementing the EPA Clean Power Plan in Montana

The difference between these two economic futures measures the economic impact of changes made to comply with 111(d). As shown in the table above, the impacts represent a significant loss to the state economy of jobs, income, output, tax revenues and population. Within three years of implementation of the compliance plan, the state economy

• suffers a job loss of more than 7,100 jobs, reflecting not only the regular and contractor jobs at all four units of the Colstrip generation facility, but also the neighboring coal

mine, as well as the local government jobs supported by the significant property tax bills those facilities pay, and all of the changes elsewhere in the economy that result from those losses;

- incurs a loss of over \$500 million in annual income received by Montana households which is made larger by the fact that the jobs lost due to 111(d) pay well in excess of the Montana average;
- realizes a loss of more than \$1.5 billion in gross output (sales) by Montana businesses and other organizations, as Montana swings from being a state with significant energy exports to a state that must rely on imported power from other states and regions in periods of heavy load or during generation curtailments;
- ultimately realizes a decline in population, particularly in working-aged families and their children, as economic opportunities in our state worsen relative to other states.

The economic impacts of 111(d) in Montana have a wide footprint, both geographically and across industries. But their effect is especially pronounced in eastern Montana, where both the Colstrip generation facilities and the Western Energy Company coal mine that supplies them are located. The more than 4,000 jobs lost in eastern Montana counties as a result of 111(d) comprise almost 7 percent of all jobs in the region, and two thirds of the decline in output that occurs statewide is incurred by businesses and other organizations in the eastern 14-county region of the state. Yet as the figure below makes clear, other regions of the state are significantly impacted by 111(d), through the impact of higher electricity prices as well as declines in state and local property tax revenues.



The impacts of 111(d) in Montana are large in some industries you would expect, namely, utilities and mining. The shutdown of the Colstrip SES and the closure of the Western Energy Company mine contribute to those declines directly. But these are not the two industries that are hit the hardest in terms of job losses in year 2025, as shown in the pie chart below. The job decline of 1,760 jobs suffered by construction industries and the 1,510 jobs lost in state and local government are significantly larger than those two sectors which would seem to have a closer connection to the power plant itself.

The relative size of these negative job impacts among industries comes about for several reasons. First, both utilities and mining are capital-intensive industries, and so the jobs lost understate the economic scale of the changes. The construction industry is just the opposite, with labor representing a large portion of total industry expenses. Declines in that industry come about – especially in the beginning of the compliance period – as the sudden decline in demand creates a situation where both residential and commercial stocks of capital are much higher than needed. Government job declines occur due to the significant declines in both population, which reduces demand for government services, and property tax and other tax revenues, which fund those services.



There is considerable variability in the impacts of the 111(d) compliance scenario over time, although for the entire period studied by BBER those impacts remain large. Before 2022 there are some positive impacts on the economy as construction projects for a new gas turbine, gas

pipeline and new transmission infrastructure that is necessary to serve Montana customers is underway. From 2022 forward, however, impacts are dominated by (i) the upstream and downstream impacts of the closure of Colstrip, as well as the facility's contribution itself, whose sizable economic contributions were noted in earlier research (Barkey and Polzin, 2010), (ii) the rate increases borne by Montana businesses and residents to pay for the significant new investment needed to provide replacement baseload generation, and (iii) the changes in electricity prices borne by all wholesale and retail purchasers of electrical power as market prices for merchant power move upwards.

Not all of the changes which are due to 111(d) produce negative impacts. The construction and operations of a 250 MW combined cycle combustion turbine, including building a new pipeline to serve its natural gas needs, the remediation activities at the Colstrip site, and even the reduction NorthWestern Energy's property tax bill from shedding generation assets that is partially passed to rate payers all result in some increases in economic activity. But the net result of all the changes, as is demonstrated above, is profoundly negative for every year studied after year 2022.



Other important findings of the economic impacts of 111 (d) include:

• With income of Montana households down by more than half a billion dollars per year due to the effect of 111(d), the spending power of Montanans as a group is significantly lower. The annual after-tax income of Montana households is lower in total by \$440.6

million in year 2025 statewide.

- Compliance with the 111(d) final rule has a disproportionate impact on higher income jobs. The average earnings of the jobs lost in year 2025 is almost \$66,000 per job, growing to nearly \$80,000 per job (all dollar figures expressed in terms of 2015 spending power) by year 2045. This takes our state in the opposite direction we need to go to close the earnings gap with other states.
- The tax implications of 111 (d) compliance are significant, for at least two reasons. First, electric power generation and coal mining are capital intensive businesses, with a large footprint in the mix of taxable value as part of local property taxes. Also, the coal business contributes significantly to state tax receipts through severance taxes and lease payments. We estimate the decline in state and local tax and non-tax revenues due to 111(d) to be in excess of \$145 million per year in 2025.
- The loss of jobs and job opportunities from implementation of 111(d) in Montana results in working age people leaving the state, taking their children and future children with them. The decline in school-aged population, particularly in smaller communities, could challenge the viability of schools. The population declines due to 111(d) peak at over 10,700 people overall, with school-aged populations declining by about 3,000.

The scale of these negative economic impacts can be seen by comparison with other economic events. The half billion dollar decline in personal income sustained in year 2025 due to the implementation of the Clean Power Plan in Montana is roughly half as large as the decline in personal income that occurred in 2009 in Montana as a result of the Great Recession. The loss in personal income due to 111(d) is greater than the total personal income of all but 12 Montana counties.

The question for many is, why are the impacts described here so sharply negative? We believe that there are several reasons that could be offered.

The first and perhaps the most obvious is that the operations of the Colstrip SES ultimately support a lot of economic activity across the state. That was the clear conclusion of the 2010 study, and those impacts are quite apparent in this analysis as well. In terms of economic activity, this facility – including the adjacent mine – is a powerful generator of wealth as well as electricity. Its purchases are dominated by a made-in-Montana product – coal – it is capital intensive and thus pays high wages, and it exports a high value product outside the state, thus bringing income from the spending of those outside Montana back to the state.

Closing that facility before the end of its productive life terminates those benefits. Bringing on new capacity – and paying for it – before the end of the old capacity's productive life entails higher costs than would otherwise be the case.

Another factor that is prominent in these results is what might be call the "terms of trade" between coal-fired generators and other sources of power generation. What replaces Colstrip has a much smaller economic footprint. Not only is the natural gas-fired 250 MW generator considered in this study much smaller from a capacity point of view, the number of jobs it supports is a tiny fraction of those supported by Colstrip. Part of this is due to the fuel and the technology – for example, there are no material-handling processes at work in a natural gas plant as there are for a coal-fired generator.

Finally there is the important role that the Colstrip generator plays in our state's power grid. Because of Colstrip, we have a high capacity 500 KV line that greatly facilitates the import and export of power. Because of Colstrip, purchasers of power in the state see lower prices. Because of Colstrip, Montana has been a net exporter of electrical energy for more than 30 years. All of these advantages could be seriously challenged, if not reversed, in a future that complies with 111(d), and that is why the ultimate economic outcomes have turned out as described in this report.

#### The Direct Effects of the Clean Power Plan

Economic changes of the magnitude reported here come about because of the nature of the changes required as a result of the Clean Power Plan. It is useful to categorize these changes into three groups:

- Direct effects, which represent changes in income flows, tax payments, employment, and other spending resulting from closures or new investments conducted by power producers themselves to bring CO2 emissions rates into compliance;
- Indirect effects, or changes in non-utility businesses that are closely linked to generation activity (e.g., the Western Energy Company mine);
- Induced effects, which refer to the ultimate reaction of trade flows, investment, migration, and spending in the economy at large by consumers, businesses and governments as they respond to changes in sales, job opportunity and demand.

At the beginning of this causal chain are these direct effects -- the sequence of decisions and changes deemed necessary to comply with the final rule. While the state's plan has not been specified, the dominance of coal-fired generation in Montana's overall portfolio of generating assets, and 111(d)'s target of a 44 reduction by year 2030 in CO2 emission rates by year 2030 appears unachievable without closure of coal fired generation. The scenario we have analyzed in this study has three components:

• the premature retirement of generation and transmission assets;

This includes the closure of units 1-4 of the Colstrip SES, which go offline in 2022, closure of the adjoining Western Energy Company coal mine, and the deactivation of the 500 KV transmission line west of Colstrip.

 construction and operation of new, gas-fired generation and transmission to serve Montana load;

This includes the construction and operation of a 250 MW CCCT in Billings, with construction of a gas supply line to serve its gas needs and other connecting infrastructure, and the construction and operation of a new 230 KV transmission line between Three Forks and Great Falls.

• changes in regional/national electricity markets due to 111(d) implementation;

Based on a NERA state-by-state analysis of the old, preliminary rule, we project that average electricity prices will go up by an average of 12 percent nationwide and by 16 percent for Montana.

Compliance with 111(d) combines actions that have a disproportionate impact on eastern Montana (closure of Colstrip) with other changes that propagate statewide (loss of property/severance tax revenues, increases in electricity prices). The results of this analysis reflect the nature of these direct impacts.

#### **Estimates of Economic Impacts**

The basic tool used in this study to assess the economic implications of 111(d) is an economic model, calibrated to represent the interactions in the Montana economy, leased from Regional Economic Models, Inc. The REMI model is one of the best known and most respected analytical tools in the policy analysis arena, and has been used in more than a hundred previous studies as well as dozens of peer-reviewed articles in scholarly journals. It is a state-of-the-art econometric forecasting model that incorporates dynamic feedbacks between economic and demographic variables. The REMI model forecasts employment, income, expenditures and populations for counties and regions based on a model containing over 100 stochastic and dynamic relationships as well as a number of identities. A full explanation of the design and operation of the model can be found in Treyz (1993).

The model used in this study disaggregated the state economy into five regions: Northwest, Southwest, North Central, South Central, and Eastern. It explicitly recognizes trade flows that exist between these regions, as well as between the regions and the rest of the world.



The model utilizes historical data on production, prices, trade flows, migration and technological change to calibrate the relationship between five basic blocks of the regional economy: output, labor and capital demand, population and labor force, wages and prices and market shares. The changes in production, labor demand and intermediate demand caused by the changes that occur due to 111(d) cause these blocks of the economy to react and adjust to a new equilibrium. As described above, the difference between the baseline and the alternate scenario is the ultimate impact of compliance with the Clean Power Plan.

The essential philosophy of the model is that regions throughout the country compete for investment, jobs, and people. When events occur in a region, they set off a chain reaction of changes where dollars flow towards better investment and production opportunities, followed over time by a flow of workers and households towards employment opportunities and higher wages. The model embodies an 82-sector input-output matrix that describes the technological

interdependence of production sectors of the economy, as well as extensive trade and capital flow data to determine the share of each sector's demand that can be met by local production.

#### Conclusion

This study reports on what could potentially be the largest economic event to occur in Montana in more than three decades. The sequence of events that would have to occur to bring the emission rates of Montana's electric generating facilities into compliance with the target rates called for in the EPA's Clean Power Plan – percentage reductions which are higher in Montana than any other state in the country – could exact a toll on economic activity in terms of jobs, income, sales, tax revenues and population. While these economic impacts would fall most heavily on eastern Montana, the nature of the changes required by the regulation as well as the changes in electricity prices overall would impose sizable negative impacts on all regions of the state.

Specifically, we find that the implementation of 111(d) in Montana as described in this report would

- result in the loss of more than 7,000 jobs in year 2025, which have average earnings per job of almost \$66,000,
- impose a reduction of more than half a billion dollars in income received by Montana households, equal to half of the reduction suffered by the state in the Great Recession,
- result in a decline in sales by Montana businesses and other organizations of more than \$1.5 billion, and
- cause a population loss of over 10,000 people due to changes in demand and job opportunity.

#### About the BBER

The Bureau of Business and Economic Research (BBER) was founded as the research arm of The University of Montana's School of Business Administration in 1948. As set forth in its mission statement,

"The purpose of the Bureau is to serve the general public, as well as people in business, labor, and government, by providing an understanding of the economic environment in which Montanans live and work."

BBER has developed over the years to become one of the most sought-after sources of information and analysis on the Montana economy. It has published the Montana Business Quarterly, its award-winning business periodical, since 1962, and has conducted the Montana Poll, a quarterly sentiment survey of the Montana adult population, since 1980.

#### 1. Introduction and Overview

On August 3, 2015, the U.S. Environmental Protection Agency announced its Final Rule for its Clean Power Plan aimed at reducing CO2 emission rates for electric generating units around the country. As was the case for its preliminary rule published in 2014, the Final Rule requires states to file plans with the EPA spelling out the actions they will take to achieve CO2 emission rates set forth in state-specific targets by the year 2030. However, in the Final Rule the emission rates goals for the states have undergone significant revision. That has greatly complicated the task of complying with the Rule – referred to as "111(d)" for the section of the Clean Air Act cited as the authority for EPA's actions -- for Montana.



#### Source: U.S. Environmental Protection Agency

The implementation of 111(d) in Montana will require a larger percentage reduction in CO2 emission rates – comparing 2030 targets to the 2012 baseline – than any other state. Measuring the pounds of CO2 emissions from fossil fuel power plants per MWH of electrical generation puts Montana's 2012 emissions at 2,481 lbs./MWH, as shown in Figure 1.1. Compared to a status quo projection of 2,314 lbs./MWH for year 2020, meeting the goal of 1,305 lbs./MWH for the eight year compliance period commencing in year 2022 will require a 44 percent reduction in emissions. This is more than twice as large as the reduction of 21 percent that was set for Montana's emission rates in the preliminary rule.

The revision largely came about due to changes in the methodology used to calculate each state's emission target as well as a reformulation of baseline emission rates. The effect of these changes has been to give credit to states for actions already taken to reduce emissions, while requiring larger reductions from coal-dependent states who have kept their facilities in

operation. As shown in Figure 1.1, the required reductions are large for Montana, North Dakota and Wyoming which primarily depend on coal. States which have already retired coal plants got some credit in the Final Rule's computations, which resulted in a smaller required reduction in CO2 emission rates in places like Washington and California when compared to what was previously published.



Note: Data are for year 2013 Source: U.S. Energy Information Administration

# Montana's Compliance Options

The large revision in Montana's required CO2 emission reduction has narrowed the choice set for compliance for our state. In the fall of 2014 a "white paper" analysis of the preliminary rule by the Montana Department of Environmental Quality was able to consider a list of compliance options that did not require the closure of the Colstrip SES. That analysis is no longer applicable in light of the revised rule.

To understand what options do exist we must first consider Montana's current power generation portfolio, shown in Figure 1.2 for the year 2013. Our fossil fuel-based generation is almost entirely based on coal. In 2013 almost 95 percent of fossil fuel-based electricity was generated with coal.

The Clean Power Plan presents states with two possible paths to compliance for existing fossil fuel-based generation facilities. Under the rate-based option, states must reduce (typically) the rate of CO2 emissions, expressed in pounds of CO2 per megawatt hour. On this basis,

Montana's target for compliance is 1,305 lbs. per MWH by year 2030, which is a 47 percent reduction from EPA's 2012 adjusted baseline rate for Montana of 2,481 lbs. per MWH.

Under current technology, achieving the target CO2 emission rate to meet the 111(d) goal at existing generating facilities remains technically and economically infeasible. Retiring coalbased units here also does very little to affect the overall emissions rate for the state, since doing so lowers both the numerator and the denominator of this fraction.

Montana's path to compliance will be based on pursuing the second path to compliance offered within 111(d), which is based on meeting a mass-based CO2 standard. That standard is to emit a maximum of 11,303,107 tons of CO2 in year 2030. Meeting this target would require a 41 percent reduction compared to the EPA's adjusted baseline for 2012.

To assess the scale of that challenge, consider the emissions of the current coal generators in the state shown in Figure 1.3. Those CO2 emissions represent an average annual emissions that are based on emissions data for 1998-2014. The individual units of the Colstrip SES are shown separately. The state's other, smaller coal-fired generators – Corrette (now decommissioned), Lewis & Clark, CELP, Yellowstone, and Hardin – are shown as a group.



Compared to the emissions data shown in the figure, the 111(d) mass-based target represents a required reduction of 8.5 million tons of CO2. It is apparent that the emissions reductions realized by closing Units 1 and 2 of Colstrip would not be large enough to achieve the reductions in CO2 required by 111(d). Taking the additional step of reducing, say, Unit 3 of that facility to half power, with some small adjustments to other coal plants statewide, would be required.

Given the ownership structure of the Colstrip facility, as well as the operating and economic parameters of the facility as a whole, the partial operation described above to achieve compliance could be difficult to accomplish, since all of the fixed costs of the facility would be borne by a smaller revenue stream.

These numerical allocations of CO2 emissions to individual generators are only instructive to give a perspective on the scale of Montana's compliance challenge. What will be more controlling are the actual policy decisions left to be made, and the opportunities might arise to purchase emissions credits from other states. Which coal-fired generation units will remain in

operation after 2022 will depend on how Montana allocates its emission credits to individual facilities.

Another uncertainty that arises in formulating a compliance scenario is the potential of purchasing emissions credits from other states. 111(d) could allow states whose emissions are below their targets to sell the rights to their unused emission credits to states like Montana that emit CO2 above their threshold. These transactions would occur on an exchange where prices would be set by supply and demand.

While this mechanism is appealing as an idea to reduce the costs of complying with the regulation, its uncertainties do not mesh well with realities of the power system's planning and operation. Given the fairly long lead times needed to complete the planning and building of generating facilities, transmission lines and other system infrastructure, the information that credits might be available in the future is difficult to integrate in the decision process. That is particularly so when the quantity and price of those credits is also unknown.

For these reasons, this study examines the consequences for a compliance scenario to 111(d) that includes the closure of the Colstrip facility. We do not present this scenario as a forecast of what will actually occur to comply with the regulation. But the size of the Montana's CO2 emissions that must occur under 111(d), and the considerable uncertainty attached to options that might head off its complete closure make the approach taken in this study of the economic consequences timely and relevant.

#### The Focus of This Study

To understand what the Clean Power Plan means for the Montana economy, we present a sequence of actions that can be taken that (i) comply with the rule and (ii) meet the energy needs of Montanans. This study focuses on the economic implications of such a compliance scenario. Other scenarios are certainly possible, but each should be subject to the same level of analysis and meet the same criteria before being compared to this one.

This study does not render an opinion on the efficacy of the Clean Power Plan nor do the authors advocate for a particular compliance scenario. Rather, we estimate the economic impact of a scenario in which the main emission reducing mechanism is the closure of Colstrip SES. As discussed in the next section, this closure is part of a sequence of actions that would address both 111(d) compliance as well as the continued operations of power delivery to customers.

The Colstrip plant is a significant driver of economic activity in Montana. It supplies approximately 2,300 MW of relatively inexpensive power necessary to meet peak days, and reduces rates for Montanan's directly but also through Montana's status as a net energy exporter – Montana has the 12<sup>th</sup> lowest electricity price in the country when averaged across all sectors. Colstrip also provides employment, pays property taxes, and supports transmission infrastructure as well as coal mining operations. Those, in turn, support employment, income and tax revenue across the state.

The report proceeds as follows: below we describe the compliance scenario under study and describe what implementation of 111(d) could look like for Montana. In section three we introduce our analytic framework and policy analysis with the REMI model. We then present results of the economic impacts of the Clean Power Plan, followed by summary and conclusions. A full set of tables with greater detail on the analytical results is presented in Appendix A.

#### 2. Implementation of the Clean Power Plan in Montana

States are required to file compliance plans with the EPA detailing the actions they will take to meet the goals set forth in the plan by 2016, with an opportunity to apply for an extension to 2018. While Montana's actual plan is not yet available, the size of the CO2 emission rate reductions mandated by 111(d), and the limited opportunities to secure reductions on that scale, make the broad characteristics of whatever final plan is adopted apparent. We detail in this section of the report a 111(d) scenario that (a) complies with the requirements of the regulation, and (b) continues to provide Montana businesses, households, and other organizations with reliable electric power.

Our objective in formulating a 111(d) compliance scenario for Montana is to broadly characterize, in terms of investments, spending, and other economic changes, how compliance with the regulation will affect economic activity. The requirements of performing this economic projection fall considerably short of those involved with generation and transmission planning. The kind of power dispatch simulations over a broad choice set of resources that is involved with those processes was not conducted for this study. Rather, we have employed a top level assessment of the kind of capital and operating costs that would characterize any investment in new base load generation and transmission that might be necessitated by changes imposed by the regulation.

Unless low-cost emissions allowances credits become available in sufficient quantity, any compliance scenario for 111(d) in Montana will have two basic components:

- The retirement of existing coal-fired electric generating units, and
- The construction and operation of new generation to meet customer needs while conforming with the regulation.

While compliance and non-compliance are based on CO2 emission rates, which are associated with power generation, it is important to note that changes in generation plans can have profound impacts upstream (fuel supply) and downstream (transmission). Those changes are modeled as part of the scenarios. It must also be noted that the implementation of the Clean Power Plan in Montana is not occurring in a vacuum – the regulation is also taking effect in every other state. This has implications for regional wholesale electricity markets for buyers and sellers here.

#### The Compliance Scenario – Retirement of Coal-Fired Generation

Montana's compliance with 111(d) will come about through the mass-based option offered in the Final Rule, requiring a reduction in total CO2 emissions of approximately 8.5 million tons annually. As discussed in the previous section, this is a 41 percent reduction from EPA's calculation of its adjusted baseline in 2012. Given that there is only a small amount of natural gas-fired generation in the state, Montana's baseline CO2 emission rate per MWH from fossil fuel sources is nearly equal to that of its coal-fired generation units alone.

Such a sizable decline raises the possibility of the closure of all or part of the coal-fired Colstrip Steam Electric Station in southeast Montana, by far the largest generator of electricity in Montana and the largest industrial facility in the state. The four units of the Colstrip plant are operated by Talen Energy, and are jointly owned by Talen, NorthWestern Energy, Puget Sound Energy, Portland General Electric, Avista Corporation, and PacifiCorp. The plant is fueled by Powder River Basin coal transported by conveyor from the adjacent Rosebud coal mine, owned and operated by Western Energy Company.

As a response to the mandate to reduce CO2 emissions under 111(d), we analyze the following scenario:

i. The closure of units 1-4 of the Colstrip SES, beginning in year 2022.

While the closure of units 1-2 and a partial shutdown of 3 would reduce CO2 emissions by the goal set for Montana in 111(d), the operation of one and a half units in a stand-alone configuration would not be economically feasible, since the fixed cost of the entire remaining facility would rise significantly in proportion to total revenues.

ii. The closure of the adjacent Rosebud mine, commencing in 2022.

The mine has no competitive access to transportation to sell its product to other power generators who, in any event, are pressed by 111(d) to shift away from coal.

- iii. The teardown and remediation of both sites.
- iv. The loss to the Colstrip owners measured as the book value of the undepreciated capital it represents on the date of its closure.
- v. The closure and decommissioning of the 500 KV transmission line used to transport Colstrip power to customers outside Montana.

The capacity of this line would be greatly diminished by the loss of the Colstrip base load generation. The closure of the Bonneville Power Authority's segment of the line west of Garrison in the event of a closure of Colstrip is specified in the operating agreement between BPA and Colstrip owners.

#### Discussion

The mechanisms through which these changes work through the Montana economy are varied. The first is the loss of jobs and production at the facilities themselves. The Colstrip SES employs 370 full time workers in addition to the contractors who perform scheduled maintenance and other functions. The Rosebud mine produces 9.2 million tons of coal annually, employing 390 workers and paying \$32 million in production-related taxes to the state of Montana each year.

These continuing economic contributions of the Colstrip SES, which was constructed in the 1970's and 1980's, were documented in a previous study (2010). Those contributions would be lost as part of the actions required to comply with 111(d). Those losses are reflected in the economic impacts reported in the next section.

Unlike the 2010 study, however, this research examines a scenario where the Colstrip facility is retired and torn down. There is economic activity generated as the site is remediated, which is estimated to be a \$200 million project. When that activity is over, however, the city of Colstrip loses the \$18.7 million in annual property tax revenue from the facility.

We also consider the downstream impacts from the Colstrip closure. As noted above, the 500 KV transmission line used to export power is lost. This greatly diminishes Montana's capacity to



export and import power. Montana loses 222 MW of baseload generation, which is NorthWestern Energy's ownership share of Unit 4 of Colstrip. (Replacement of that capacity is discussed below).

#### Source: U.S. Energy Information Administration

Overall, Montana loses approximately 2,300 MW of generation capacity, which has important implications for the cities, coops, and larger commercial and industrial customers who currently secure their power on the wholesale market from merchant power providers such as Talen Energy. It also impacts power purchases by NorthWestern Energy with consequent impacts on its customers.

Montana's historical status as a net exporter of electrical energy has benefitted consumers in several ways. First, large customers in Montana who purchase power directly from merchant power producers can largely avoid the transmission costs customers in other states pay to transport their power from the Northwest regional wholesale delivery point on the Columbia River in central Washington (referred to as "mid-C"). This is because the power source is Colstrip – either as a direct transaction, or as part of a power "swap" post-sale that substitutes the geographically closer Colstrip power with another buyer in the region.

In the 111(d) compliance scenario considered here, Montana's status as an energy exporter would end, and the capacity to make these transactions would be lost. Larger customers accustomed to getting discounts on their energy purchases relative to the mid-C delivery price would instead pay a premium reflecting the additional transmission costs to bring their power east. The swing from discount to premium could increase prices by as much as 15-20 percent.

#### The Compliance Scenario – Replacement Generation

The loss of Colstrip would have important implications for the availability and reliability of electric power delivery to customers in Montana. Not only is a source of baseload generation dedicated to Montana customers lost – NorthWestern Energy's share of Colstrip Unit 4 – but there would be serious imbalances on the transmission system that would make the probability of

destructive events unacceptably high. Thus another part of the 111(d) compliance scenario is the construction and operation of new generation and transmission to restore the system to its pre-111(d) state in meeting customer demand.

We emphasize again that the scenario here is not the result of the extensive modelling, simulation, or operating and dispatching analysis that would be conducted as part of generation and transmission planning. The scenario is intended to characterize the investments necessary to meet customers' electric power needs while complying with the CO2 emission mandates of 111(d).

We analyze a scenario for replacement generation with the following investments:

i. A new natural gas-fired 250 MW combined cycle combustion turbine to be located in Billings.

This generator is sized to replace the Montana-dedicated capacity lost with the closure of Colstrip. Its location in Billings reflects the need for voltage support in that area, the costs of connecting to the transmission system and the costs of obtaining the firm fuel supply for the unit.

ii. The construction and operation of a 75-mile pipeline from Billings south to the Grizzly connection point to the Colorado Interstate Gas Company's system to supply natural gas to the new generator.

This is necessary because there is not firm pipeline capacity available on the existing gas transmission system.

iii. A new 230 KV transmission line between Great Falls and Three Forks (135 miles) to support current needs and obligations.

This new transmission line is necessary to offset the deleterious effects of the loss of both the coal-fired base generation at Colstrip as well as the 500 KV Colstrip transmission line.

iv. Other infrastructure support investments.

#### **Alternative Scenario Formulation**

Other scenarios of replacement generation to supplant all or part of the baseload generation dedicated to Montana customers that is removed from the system with the retirement of Colstrip were considered for this study. Of particular interest, given the objectives of 111(d) to reduce greenhouse gas emissions, were generation options that involve renewables, especially wind and solar power. Given the dramatic growth in the share of wind-powered generation in the power generation portfolios of many states, including Montana, exploration of this option was pursued.

In the spirit of the logic that was used to frame the natural gas-based generation scenario described above, a wind-power generation scenario was expected to (i) meet the standard for CO2 emission compliance set forth in 111(d), and (ii) restore the power delivery system to the level of reliability that exists today. The fact that these efforts ultimately failed, and that we were not able to design a wind power-based option that presented a reasonable option that met these

criteria was largely due to the nature or type of power that is lost in baseload generation at Colstrip.

It is well known that the intermittency of the output of wind generation in actual applications presents challenges to management of power delivery systems. The presence of an intermittent generation source such as wind or solar requires that other dispatchable generators, such as diesel powered internal combustion units or natural gas-fired regulator units, operate in close coordination in order to smooth out the variations in power.

The application of wind power in the setting of this study is particularly demanding. The resource which is lost in a 111(d) compliance scenario for Montana is baseload, coal-fired generation. Not only is the percentage of time which these units operate at full output – referred to as the capacity factor – very high (typically 85 percent), but their availability in the hours of peak or super-peak demand on the system caused by extreme weather or other conditions, remains unchanged. Not only is wind power's capacity much lower, typically 40 percent or less, but its capacity during peak hours is a nearly negligible 3 percent.

Thus in designing a wind scenario that would truly represent a replacement option for the baseload generation dedicated to Montana that is lost at Colstrip, we have three basic options:

- add wind generation to the natural gas CCCT option described above,
- consider a very large addition more than 2000 MW to wind generation capacity that could pass the criteria of restoring the system to the pre-111(d) level of reliability and performance, or
- consider a hybrid natural gas/wind option that could be said to make the same contribution to Montana's power system as what would be lost in order to comply with 111(d).

Doing something different than what is laid out above – e.g., considering a wind-power option that does not replace the baseload generation lost to Montana from the retirement of Colstrip – cannot be said to be a replacement scenario as defined in this study.

It is readily apparent that the first two of these basic options are not attractive. Simply adding wind power generation to the natural gas CCCT scenario adds capital costs with little gain to the economy. The very large wind farm described in the second option fails on practical and economy grounds. Not only would the land area for such a facility be enormous, but its capital costs – in the neighborhood of \$4 billion – make it infeasible as well.

The third option – a hybrid natural gas/wind option that presents the power delivery system with the equivalent in baseload generation to what is lost with the retirement of Colstrip – is challenged by economic considerations. From a technical perspective this is accomplished by building and operating quick-start, rapid ramp-up/ramp-down fossil-fueled generators that smooth the fluctuations in wind-power generation. Not only does the pattern of operation of these natural gas or diesel-fired units frequently conflict with a pattern that would optimize their heat rate and thus conform to lowest cost operation, but their addition to the wind farm's capital costs pushes the overall capital cost of the hybrid facility to levels that are uncompetitive with other options.

For these reasons, the study does not include a wind-power based option as part of a feasible 111(d) compliance scenario.

#### Discussion

The two major components of this compliance scenario present power producers in Montana (and in many cases, ratepayers) with a sizable price tag to get back to a situation of power supply that is acceptably close to what we have today. Part of that price tag comes from prematurely retiring assets of sizable value, and another is the cost of the replacement investments.

Top level estimates of the cost of carrying out the investments above are as follows:

- i. New CCCT in Billings, \$275 million
- ii. New pipeline, including compressor station, \$67.4 million
- iii. New 230 KV line, \$106 million
- iv. Other infrastructure, \$25 million

We consider a scenario where these investments come online in the beginning of 2022. To say this is aggressive would be an understatement. As NorthWestern Energy's experience with the now-abandoned MISTI project in central Montana demonstrates, the siting and permitting of new transmission lines is extremely difficult to carry out in a timely manner. It would likely true of the new gas supply line for the Billings CCCT, or a new 230 KV transmission line as well.

There are positive economic impacts that occur from carrying out these projects. Those impacts show up in the regions of the state that see new construction. There is also a positive impact of the continued operations of the Billings CCCT. These impacts are offset by the sizable rate increases passed to NorthWestern residential and commercial customers to pay for the new capacity.

However, it must be recognized that the economic footprint of a natural gas generating facility, and in particular one that is a tenth of the size of the coal-fired generation being retired, is quite limited. Based on operating information from other facilities currently online, we project employment at the generator to be 18 people. This is in stark contrast to the 370 Talen employees working at Colstrip and the 390 workers at the adjacent Rosebud mine.

#### 3. Policy Analysis with the REMI Model

Economic impacts occur because of events or activities that affect expenditures. Changes in spending which are new and do not simply displace spending elsewhere in the region impacts economic activity directly but also affects downstream spending as the recipients of wages, sales and tax revenues reapportion their income in the local economy. Changes in the path of investment, migration, and prices and wages are possible as well.

The basic tool used in this study to assess the economic implications of 111(d) is an economic model, calibrated to represent the interactions in the Montana economy, leased from Regional Economic Models, Inc. (REMI). The REMI model is one of the best known and most respected analytical tools in the policy analysis arena, and has been used in more than a hundred previous studies as well as dozens of peer-reviewed articles in scholarly journals. It is a state-of-the-art econometric forecasting model that incorporates dynamic feedbacks between economic and demographic variables. The REMI model forecasts employment, income, expenditures and populations for counties and regions based on a model containing over 100 statistically estimated behavioral and dynamic relationships as well as a number of identities. A full explanation of the design and operation of the model can be found in Treyz (1988).

The model used in this study disaggregated the state economy into five regions: Northwest, Southwest, North Central, South Central, and Eastern. It explicitly recognizes trade flows that exist between these regions, as well as between the regions and the rest of the world. The definition of the regions is shown in Figure 3.1 below.



Figure 3.1 Economic Regions



### Figure 3.2: Policy Analysis with the REMI Model

The use of the model to derive the results of this study is illustrated graphically in Figure 3.2. First, a baseline projection of the economy is produced using the model, utilizing inputs and assumptions which extrapolate growth and conditions of recent history. The model is then used a second time, with identical inputs – except that in this alternative scenario, the changes that occur due to 111(d) are added. Thus the actions taken to comply with the regulation are inputs that ultimately produces a different economy, reflecting not only the direct effects in production, employment, and expenditures due to the policy, but also how the rest of the economy reacts to those changes. The difference between the baseline and alternative scenarios of the economy represents the economic impact of those compliance actions.

# **REMI Model Linkages (Excluding Economic Geography Linkages)**



The model utilizes historical data on production, prices, trade flows, migration and technological change to calibrate the relationship between five basic blocks of the regional economy as depicted above: output, labor and capital demand, population and labor force, wages and prices and market shares. The changes in production, labor demand and intermediate demand caused by the changes that occur due to 111(d) causes these blocks of the economy to react and adjust to a new equilibrium. As described above, the difference between the baseline and the alternate scenario is the ultimate impact of actions taken to comply with the Clean Power Plan.

The essential philosophy of the model is that regions throughout the country compete for investment, jobs, and people. When events occur in a region, they set off a chain reaction of actions where dollars flow towards better investment and production opportunities, followed over time by a flow of workers and households towards employment opportunities and higher wages. The model embodies an 82-sector input-output matrix that describes the technological interdependence of production sectors of the economy, as well as extensive trade and capital flow data to determine the share of each sector's demand that can be met by local production.

The model is extremely well suited for the analysis described in this report. As seen in several of the energy studies listed in the references section, it has been used for similar analyses of energy-related investment and opportunities.

As powerful and flexible as the model is, the answers it provides are only as good as the questions posed to it. The majority of work in this study is carefully crafting the inputs used to construct a scenario of the Montana economy that reflects compliance with the Clean Power Plan. We now turn to the findings of the analysis.

4. The Economic Impacts of the Clean Power Plan in Montana

The purpose of this study is to gain an understanding of the potential implications of the EPA's Clean Power Plan for the Montana economy. This ultimately involves comparing the outcomes for the economy in a baseline, status quo, no 111(d) scenario, to how the economy would evolve when the actions necessary to comply with the are in force. We have used the well-respected REMI model, described in the previous section, to conduct the analysis.

Even though the results we present here specify economic outcomes at points of time in the future, they do not constitute a forecast of the economy, for at least three reasons. First, the precise set of actions that Montana will take to comply with 111(d) are not yet known. The state has until year 2016 to file its plan. Secondly, any number of legal and political events could occur to alter, delay, or even cancel the Plan itself. Finally, the practical difficulties in siting, permitting, and building the new infrastructure involved in replacing the power generation and transmission capacity that is lost in order to comply with 111(d) make it highly unlikely that such facilities could be completed and made operational according to the timetable specified in this analysis.

Yet the findings of this analysis remain extremely relevant. They have a direct bearing on the research question: what kind of event would the implementation of 111(d) be for the Montana economy? Our scenario of 111(d) compliance presented in section 2 of this report may differ in some respects to the actions Montana will take, but the basic components of any compliance plan – the reductions in all or part of the coal-fired generation at Colstrip and the investment in new capacity to replace what is lost – are well captured by the scenario we analyze. Carrying these actions through to assess their economic impact thus sheds light on what kinds of changes in the economy we can expect.

#### **Summary of Findings**

We have analyzed a specific scenario of compliance with 111(d) that complies with the rule and retains capacity and reliability. It is in conformance with the rule, which requires changes in existing facilities by the year 2022, and reductions in CO2 emission rates in conformance with the targets over the subsequent 8 year period. It provides for new generation and other infrastructure that replaces power that is currently supplied at facilities that would be shutdown, decommissioned, and remediated to conform with 111(d). And it reflects third-party projections of price changes that would result as the targets set by 111(d) come into effect regionally and nationally.

The BBER used its economic model, leased from Regional Economic Models, Inc. (REMI), and specifically calibrated to the Montana economy, to project two economic futures for our state. The first is a reference, status quo projection. The second is a projection of a future under compliance with 111(d). This future reflects a complete set of actions that would comply with the final rule, as well as changes in wholesale and retail electricity markets that result. These changes bring the economy to a different, lower, resting point as investment flows, population, and spending by businesses, governments and households respond.

# **Table 4.1 Summary of Impacts**

| Impacts Summary         |               |                 |          |          |  |
|-------------------------|---------------|-----------------|----------|----------|--|
|                         |               | Impacts by Year |          |          |  |
| Category                | Units         | 2025            | 2035     | 2045     |  |
| Total Employment        | Jobs          | -7,137          | -5,381   | -3,715   |  |
| Personal Income         | \$ Mill./Year | -515.9          | -556.3   | -482.2   |  |
| Disposable Pers. Income | \$ Mill./Year | -440.6          | -481.2   | -417.7   |  |
| Selected State Revenues | \$ Mill./Year | -145.6          | -165.8   | -152.0   |  |
| Property Tax Revenues   | \$ Mill./Year | -44.4           | -74.5    | -78.5    |  |
| Output                  | \$ Mill./Year | -1,511.7        | -1,407.4 | -1,268.0 |  |
| Population              | People        | -5,211          | -10,731  | -9,207   |  |
|                         |               |                 |          |          |  |

The difference between these two economic futures measures the economic impact of actions taken to comply with 111(d) in Montana. As shown in the Table 4.1, the impact of implementation is a significant loss to the state economy of jobs, income, output, tax revenues and population. By the year 2025, three years after the reductions in CO2 emissions commence, we project that the state:

- suffers a job loss of more than 7,100 jobs, reflecting not only the regular and contractor jobs at all four units of the Colstrip generation facility, but also the neighboring coal mine, as well as the local government jobs supported by the significant property tax bills those facilities pay, and all of the changes elsewhere in the economy that result from those losses;
- incurs a loss of over \$500 million in annual income received by Montana households which is made larger by the fact that the jobs lost due to 111(d) pay well in excess of the Montana average;
- realizes a loss of more than \$1.5 billion in gross output (sales) by Montana businesses and other organizations, as Montana swings from being a state with significant energy exports to a state that must rely on imported power from other states and regions in periods of heavy load or during generation curtailments;
- ultimately realizes a decline in population, particularly in working-aged families and their children, as economic opportunities in our state worsen relative to other states.

These changes in the economy reflect both positive and negative changes in the economy that are due to steps to comply with 111(d). For example, the construction activity in building new generation, a new gas supply pipeline and the new transmission line, the operation of those facilities, and even the jobs created in remediating the Colstrip site, all add to the state

economy. Capital and other costs incurred by NorthWestern Energy will ultimately show up in electric rates, although those will be spread out over a longer span of years.

But clearly the single largest negative outcome in 111(d) compliance is the cessation of generation at the Colstrip SES, which precipitates the closure of the Western Electric Company's Rosebud Mine. The 2010 study on the continuing contributions of the Colstrip SES estimated that about 3,600 jobs statewide were ultimately supported by that facilities operations. These losses figure prominently in the findings of this study as well.

The sequence of events that would occur with the closure of Colstrip, however, adds to these impacts. With the loss of the 500 KV transmission line running west from Colstrip comes the loss of property tax revenue to the jurisdictions it traverses, and also a reduction in the ability of Montana to both import and export power. This is one of several factors that will push up electric rates in the 111(d) scenario. The others include: (i) rate increases passed to NorthWestern Energy residential and commercial customers to pay for the new generation and transmission capacity required to replace the portion of Colstrip SES output dedicated to Montana customers, (ii) an increase in market prices paid by those who access wholesale power markets reflecting the increased costs of transporting the power they purchase from outside Montana, and (iii) the change in the marketplace in the entire Northwest region, reflecting closure of coal-fired plants targeted by the regulation.

Increases in electric prices bring about increases in business operating costs and changing patterns of investment. Changes in electricity prices and declines in property tax and other state and local tax revenues are the two most important mechanisms that cause 111(d) impacts to propagate to all regions of the state.

#### **Employment Impacts**

One of the most basic measures of economic activity is employment. A closer look at the job losses which result in the economy from compliance with 111(d) gives a measure of the impact that is easy to understand, as well as revealing how the actions taken to comply with the regulation affect different industries and regions within the state.

The changes in Montana employment that come about from actions taken to comply with 111(d), as we have laid out in the compliance scenario described in section 2, vary from year to year, as shown in Figure 4.1. Before the year 2022, compliance actions produce an increase in employment, due to the construction of the new natural gas fired generator in Billings, the pipeline for its gas supply, and the new 230 KV transmission line. The costs of those projects is reflected in electricity prices, but those are spread out over a longer period.

Beginning in year 2022, as is apparent from the Figure, employment changes turn sharply negative. There is some moderation in employment impacts over the next several decades, although the difference between the status quo baseline projection and the projection with 111(d) remains large throughout the entire period. Some of this moderation in the impact is due to the rolling off of rates as new infrastructure is paid for. It is also due to the productivity improvements that occur over this long span of time – with more output per job, output changes produce smaller job changes.



The job losses suffered due to 111(d) extend far beyond the utilities and the mining industries. As shown in Table 4.2, the largest number of jobs in year 2025 occurs in construction industries, which decline by 1,760 jobs in that year. The second largest job decline among major industries occurs in state and local government. The size of the declines reflects in part the higher labor-intensity of these industries, compared to the capital-intensive nature of mining and utilities businesses. But it also reflects negative impacts on the drivers of those particular industries.

Construction is hit hardest at the very beginning of the compliance period which commences in 2022. With sizable declines in demand occurring for almost all Montana industries – because of the loss of spending associated with job loss and business closures – Montana businesses find themselves having more plant and capital on hand than they need. This has an outsized impact on construction workers, who would otherwise be employed to both add capacity as well as replace worn out plants and buildings.

State and local government suffer comparatively large declines for two reasons. The first is the outsized impact of 111(d) on property tax and natural resource-related revenues. In eastern Montana these impacts are most pronounced – half of the Colstrip high school budget and one third of the elementary school budget would be exposed by the revenue shortfall caused by 111(d). There is also a close relationship between state and local government employment and population. With more than 10,000 fewer people living in Montana as a result of 111(d) compliance actions, demand for state and local government services is lower.

|                                                  | Impacts by Year |        |        |
|--------------------------------------------------|-----------------|--------|--------|
| Industry                                         | 2025            | 2035   | 2045   |
| Forestry, Fishing, Related Activities, and Other | -14             | -6     | -4     |
| Mining                                           | -620            | -410   | -336   |
| Utilities                                        | -339            | -230   | -156   |
| Construction                                     | -1,760          | -844   | -411   |
| Manufacturing                                    | -85             | -52    | -27    |
| Wholesale Trade                                  | -74             | -31    | -4     |
| Retail Trade                                     | -719            | -561   | -386   |
| Transportation and Warehousing                   | -68             | -27    | -23    |
| Information                                      | -31             | -16    | -8     |
| Finance and Insurance                            | -145            | -83    | -61    |
| Real Estate and Rental and Leasing               | -123            | -83    | -53    |
| Professional and Technical Services              | -264            | -243   | -180   |
| Management of Companies and Enterprises          | -13             | -8     | -4     |
| Administrative and Waste Services                | -109            | -11    | 76     |
| Educational Services                             | -36             | -9     | 9      |
| Health Care and Social Assistance                | -384            | -298   | -221   |
| Arts, Entertainment, and Recreation              | -111            | -61    | -25    |
| Accommodation and Food Services                  | -427            | -299   | -95    |
| Other Services, except Public Administration     | -253            | -152   | -100   |
| State and Local Government                       | -1,510          | -1,927 | -1,688 |
| Federal Government                               | -7              | -4     | -3     |
| Farm                                             | -43             | -26    | -16    |
| TOTAL                                            | -7,137          | -5,381 | -3,715 |

It is clear from Table 4.2 that the effects of 111(d) compliance extend well beyond the electric power industry. Higher electricity prices together with lower demand cause cutbacks in almost every Montana industry, including health care, retail sales, professional services and accommodation and food services industries, in addition to the larger impacts on government and construction.



Figure 4.2: Employment Impacts by Region, 2025

The job losses that occur due to 111(d) in the state economy are highest in the 14-county eastern region, as shown in Figure 4.2. Given the location of the Colstrip SES and the Western Energy Company mine in Rosebud County, this is to be expected. The 4,200 jobs lost in the region in 2025 represent more than 7 percent of total regional employment. But as the Figure shows, there are significant job declines occurring in other parts of the state, geographically distant from Colstrip. These losses occur due to the effects on investment of higher electricity prices, as well as the impacts of lower government tax revenues.

#### Impacts on Business Gross Receipts

Another way of detailing changes in the economy is to examine impacts on economic output, defined as gross receipts of Montana businesses and other organizations. As shown in the summary Table 4.1, gross receipts statewide are expected to be more the \$1.5 billion lower, on an annual, inflation-corrected basis, in year 2025 due to actions taken to comply with 111(d). Table 4.3 shows how those impacts are spread across most major industries statewide.

The pattern of output impacts shown in Table 4.2 underscores the impact of 111(d) compliance on more capital intensive industries that, for that reason, have comparatively smaller employment impacts. The prominence of the negative impacts on the high-paying, capital intensive utilities and mining industries is especially apparent. The figures in this table have relevance for business owners and managers in these industries, as the data portray the loss of sales, measured in millions of dollars, their industries can expect to experience as a result of compliance with 111(d). In the eastern portion of the state, compliance with 111(d) will cause a loss in gross receipts of businesses and other organizations located there in excess of 10 percent.

# Table 4.3: Impacts on Gross Receipts

| Output Impacts, \$ Millions per Year             |                 |          |          |  |
|--------------------------------------------------|-----------------|----------|----------|--|
|                                                  | Impacts by Year |          |          |  |
| Industry                                         | 2025            | 2035     | 2045     |  |
| Forestry, Fishing, Related Activities, and Other | -1.2            | -0.4     | -0.2     |  |
| Mining                                           | -327.4          | -276.3   | -259.0   |  |
| Utilities                                        | -413.2          | -406.8   | -393.2   |  |
| Construction                                     | -209.5          | -125.5   | -83.5    |  |
| Manufacturing                                    | -47.5           | -32.1    | -24.6    |  |
| Wholesale Trade                                  | -23.0           | -23.7    | -20.5    |  |
| Retail Trade                                     | -80.1           | -88.6    | -81.6    |  |
| Transportation and Warehousing                   | -15.2           | -4.4     | -3.0     |  |
| Information                                      | -17.1           | -15.9    | -13.6    |  |
| Finance and Insurance                            | -32.9           | -26.2    | -22.2    |  |
| Real Estate and Rental and Leasing               | -33.8           | -31.9    | -24.8    |  |
| Professional and Technical Services              | -34.7           | -39.7    | -35.1    |  |
| Management of Companies and Enterprises          | -3.6            | -3.5     | -3.1     |  |
| Administrative and Waste Services                | -10.9           | -11.4    | -9.2     |  |
| Educational Services                             | -2.0            | -1.8     | -1.5     |  |
| Health Care and Social Assistance                | -39.3           | -41.1    | -39.5    |  |
| Arts, Entertainment, and Recreation              | -6.0            | -5.3     | -4.2     |  |
| Accommodation and Food Services                  | -37.7           | -44.1    | -35.4    |  |
| Other Services, except Public Administration     | -17.9           | -13.6    | -10.7    |  |
| State and Local Government                       | -148.3          | -206.9   | -196.7   |  |
| Federal Government                               | -1.5            | -1.1     | -1.0     |  |
| Farm                                             | -9.5            | -7.6     | -5.9     |  |
| TOTAL                                            | -1,512.3        | -1,407.9 | -1,268.5 |  |

#### Personal Income and Compensation Impacts

Of particular importance to Montanans are changes to the economy that affect the income they receive, both from employment and other sources. Personal income, measured in dollars per year, is the aggregation of income of all Montana residents. Given the declines in both jobs and population that occur because of 111(d) compliance, it is not a surprise to learn that impacts on personal income are sharply negative due to actions taken to comply with the regulation.

| Impacts (\$ millions per year)              |                                                                                        |        |                 |        |
|---------------------------------------------|----------------------------------------------------------------------------------------|--------|-----------------|--------|
|                                             |                                                                                        | In     | Impacts by Year |        |
| Category                                    |                                                                                        | 2025   | 2035            | 2045   |
| Total Earnings by Place of                  |                                                                                        |        |                 |        |
| Work                                        |                                                                                        | -469.2 | -399.3          | -296.9 |
|                                             | Total Wage and Salary<br>Disbursements                                                 | -340.3 | -298.3          | -226.1 |
| Supplements to Wages and                    | Salaries                                                                               | -92.5  | -97.8           | -83.7  |
|                                             | Employer contributions for<br>employee pension and insurance<br>funds                  | -59.7  | -63.1           | -54.1  |
|                                             | Employer contributions for government social insurance                                 | -32.8  | -34.7           | -29.7  |
|                                             | Proprietors' income with<br>inventory valuation and capital<br>consumption adjustments | -50.1  | -12.0           | 6.3    |
| Less: Contributions for gover               | nment social insurance                                                                 | -68.5  | -65.3           | -52.8  |
|                                             | Employee and self-employed<br>contributions for government<br>social insurance         | -35.6  | -30.6           | -23.1  |
|                                             | Employer contributions for government social insurance                                 | -32.8  | -34.7           | -29.7  |
| Plus: Adjustment for residen                | ce                                                                                     | 5.0    | 3.0             | 2.9    |
|                                             | Gross In                                                                               | -8.9   | -8.3            | -6.2   |
|                                             | Gross Out                                                                              | -13.9  | -11.3           | -9.1   |
| Equals: Net earnings by place of residence  |                                                                                        | -457.8 | -375.7          | -275.7 |
| Plus: Rental, interest, and dividend income |                                                                                        | -35.1  | -90.4           | -106.9 |
| Plus: Personal current transfer receipts    |                                                                                        | -23.0  | -90.2           | -99.7  |
| Equals: Personal Income                     |                                                                                        | -515.9 | -556.3          | -482.2 |
| Less: Personal current taxes                |                                                                                        | -7.6   | -17.4           | -18.5  |
| Equals: Disposable personal                 | income                                                                                 | -440.6 | -481.2          | -417.7 |
|                                             |                                                                                        |        |                 |        |

The standard accounting for personal income impacts for the state as a whole are shown in Table 4.4. Earnings, which is the sum of wages and salaries, benefits, and business proprietor income, makes up the largest fraction of the more than half billion dollars lost in income to households throughout the state in 2025 due to 111(d) implementation. But the smaller economy that evolves in a 111(d) compliance scenario, all forms of income are negatively affected. Rental income and dividends, for instance, are reduced in Montana as a result of 111(d).

| Table 4.5: | Compensation | Impacts |
|------------|--------------|---------|
|------------|--------------|---------|

|                             |               | Impacts by Year |        |        |
|-----------------------------|---------------|-----------------|--------|--------|
| Category                    | Units         | 2025            | 2035   | 2045   |
| Wages and Salaries          | \$ Mill./Year | -340.3          | -298.3 | -226.1 |
| Compensation                | \$ Mill./Year | -423.2          | -388.4 | -303.9 |
| Earnings                    | \$ Mill./Year | -469.2          | -399.3 | -296.9 |
|                             |               |                 |        |        |
| Earnings per Job, Lost Jobs | \$ Dollars    | 65,742          | 74,216 | 79,926 |
|                             |               |                 |        |        |

By focusing on earnings and compensation impacts, as we do in Table 4.5, a particularly unappealing aspect of the 111(d) impacts emerges: the negative impacts of the regulation for Montana disproportionately affect high paying jobs. The average earnings of the jobs lost, more than \$65,000 per year in 2025, are almost double the state average.

This occurs for two reasons. First, the direct effects of complying with the regulation fall most heavily on two of the state's highest paying industries, utilities and mining. The second is the impact of higher electricity prices. Higher energy prices affect industries which consume relatively more, which tend to be more capital intensive industries. Those kinds of industries tend to pay higher than average wages.

Not all jobs lost have high wages, of course. But on average, the jobs lost pay substantially higher than average. This is one reason why the impacts are as large as they are. In a state that struggles to move up from the bottom of nationwide rankings of states for earnings per job, the impact of compliance with the regulation makes the gap in pay between Montana and other states larger and thus makes the challenge larger as well.

#### Tax and Non-Tax Revenue Impacts

State and local government is an important employer in most parts of Montana. Compliance with 111(d) has impacts on government activity, working through two basic mechanisms. First, the size of government at the state and local level closely follows changes in overall economic activity, particularly when those changes affect school-aged population. In this sense, changes in government activity – measured by either revenues or spending – are caused by effects elsewhere in the economy.

The special tax consequences of 111(d) compliance, however, operate in the other direction as well, with changes in government activity causing changes in the underlying economy. This is because (i) utility generation and transmission are large contributors to the property tax base that ultimately supports local government, and (ii) the payments made by the coal industry to state and local governments, including production-based taxes, lease payments and other payments, are substantial. Since 111(d) targets these activities specifically, tax impacts in this study are significant, and cause 111(d) impacts to propagate beyond eastern Montana.

| Impacts, \$ Millions per Year |                 |        |        |  |
|-------------------------------|-----------------|--------|--------|--|
|                               | Impacts by Year |        |        |  |
| Industry                      | 2025            | 2035   | 2045   |  |
| Intergovernmental Revenue     | -11.1           | -22.8  | -19.6  |  |
| Selective Sales Tax           | -9.7            | -12.2  | -12.0  |  |
| License Taxes                 | -2.6            | -3.3   | -3.2   |  |
| Individual Income Tax         | -16.4           | -15.5  | -12.7  |  |
| Corporate Income Tax          | -5.5            | -5.3   | -5.0   |  |
| Other Taxes                   | -40.0           | -40.5  | -39.6  |  |
| Current Charges               | -15.2           | -15.8  | -14.8  |  |
| Miscellaneous General Revenue | -5.6            | -6.0   | -5.2   |  |
| Utility Revenue               | 0.0             | 0.0    | 0.0    |  |
| Liquor Store Revenue          | -1.1            | -1.2   | -1.0   |  |
| Insurance Trust Revenue       | -28.8           | -31.0  | -26.9  |  |
| TOTAL                         | -145.6          | -165.8 | -152.0 |  |

 Table 4.6: Selected State Revenue Impacts

The revenue impacts on the state of Montana due to 111(d) compliance by themselves are substantial, as shown in Table 4.6. The categories shown in the table correspond to categories of tax and non-tax revenue used in the Census of Governments. Selective sales taxes, as listed above, contain the coal production and energy transmission taxes that would be directly impacted by compliance with 111(d). The closure of the Western Energy Company mine would result in a loss of about \$34 million in severance taxes and other production taxes. The loss in the state's share of the \$16 million paid by the mine in Federal royalties, which is \$8 million, is included in the category Current Charges shown in the table.

Taken as a whole, compliance with 111(d) will cause state revenues to be lower by about \$146 million in year 2025. These changes are due to specific declines in resources and energy taxes as well as declines in the economy and population.

Local taxes – specifically property taxes – are significantly impacted by 111(d) as well. The Colstrip SES pays approximately \$18.7 million per year in property taxes, with another \$6 million paid by the Rosebud mine annually. The loss of these tax revenues is partially offset (at least on a statewide basis) by the property taxes paid by the 250 MW natural gas turbine in

Billings, just as the \$8.8 million in property tax revenue lost by jurisdictions along the 500 KV line linking the Colstrip SES with the western states would be partially offset by new property tax revenue of a new 230 KV line. In both cases, however, the net result is a sizable decline. Additionally, there are also the declines in property tax base that are induced elsewhere in the economy, from both commercial and residential development. We estimate those declines to be \$17.8 million, with most of that total hitting eastern Montana.

Loss of tax revenues results in restrained spending at the state and local level. Spending that is associated with coal tax revenues is of particular note due to its special structure in Montana law. The coal severance tax is by far the largest of the four production-related taxes on coal in Montana. Since 1976 the severance tax has generated about \$2.1 billion in state revenue and an additional \$1.5 billion from investment earnings from the state's coal severance trust fund. The state's general fund receives the largest portion of the earnings, but they are also directed towards a number of sub-trusts, which are managed by the state Board of Investments. They are used to fund a variety of programs that would otherwise not receive public support.

Since its creation as a sub-trust in 1992, the Treasure State Endowment Program (TSEP) has awarded more than \$200 million to local governments and special districts to help fund infrastructure projects addressing critical needs in Montana communities. The grants, which are limited by law to a maximum of \$750,000, are often leveraged against other local or federal sources, resulting in over \$900 million of total project spending. A list of projects funded by county for the programs history is found in Appendix B.

As can be seen from Figure 4.3, these projects have occurred throughout the state, and are supported by the revenues coming from just the five counties in Montana with coal production. The continued level of spending on these kinds of projects in support of infrastructure in all parts of the state is dependent on the status of the state's coal industry, which is seriously challenged by the implementation of 111(d).


### Figure 4.3: Cumulative Expenditures from TSEP, 1992-2013

### **Population Impacts**

A fundamental underpinning of a market-based economy is the flow of both investment dollars and skilled people towards economic opportunity. States and regions with greater job opportunities – both job availability and high wages – attract people from elsewhere. The opposite is also true, with economic setbacks in a state or region producing a net out-migration of working aged people, causing population to be lower than the baseline and producing other demographic outcomes.

Those kinds of impacts are apparent for the Montana economy when comparing the baseline projection of the future to the potential outcomes under compliance with 111(d). They would be most pronounced in the city of Colstrip itself, whose economic base would be very hard hit by the loss of its two largest employers, which includes the largest industrial facility in the entire state. There is loss of population in all regions of the state, however, as job opportunities worsen relative to the rest of the nation.



Figure 4.4: Population Impacts by Age Group

Population impacts occur initially due to migration, with subsequent impacts on births and younger age groups. Migration is a delayed response to changes in economic opportunity. Thus it can be seen from Figure 4.4 that the decline in working-age population peaks around year 2035, ten years after the peak employment impacts of 111(d). With declines in the number of households comes lower construction rates for new homes, lower demand for government services, and even lower payments from Federal programs based on population.

Of particular concern are the declines in school-aged population due to 111(d). These are projected to be roughly 3,000 lower than the baseline, with much of the drop off occurring in eastern Montana. These kinds of declines will threaten the viability of schools in some of our state's smaller communities.

#### **Consumption Impacts**

Most spending by Montana consumers contains at least a partial Montana component, as goods and services sourced in other states is delivered here through the supply chain. That is why the decline in spending by Montana households that is due to actions taken to comply with 111(d) is of concern to Montana businesses who capture at least part of the revenue from that spending. In total, spending by Montana consumers will be more than half a billion dollars lower in year 2025 due to actions taken to comply with 111(d).

| Spending (\$ millions per year)       |        |              |        |
|---------------------------------------|--------|--------------|--------|
|                                       | Im     | pacts by Yea | ar     |
| Category                              | 2025   | 2035         | 2045   |
| Clothing and footwear                 | -17.9  | -20.2        | -17.1  |
| Food and beverage                     | -28.1  | -35.5        | -29.7  |
| Fuel oil and other fuels              | -0.3   | -0.3         | -0.3   |
| Furnishings and household durables    | -17.9  | -18.2        | -16.7  |
| Healthcare                            | -80.8  | -101.0       | -106.9 |
| Household utilities                   | -35.9  | -38.5        | -23.7  |
| Housing                               | -64.5  | -84.2        | -71.8  |
| Motor vehicle fuels, lubricants, etc. | -12.9  | -17.8        | -15.2  |
| Motor vehicles and parts              | -25.9  | -25.1        | -21.9  |
| Other nondurable goods                | -48.2  | -53.0        | -55.4  |
| Recreation and other services         | -170.0 | -164.6       | -145.5 |
| Recreational goods                    | -44.8  | -44.6        | -41.5  |
| Transportation services               | -19.0  | -14.9        | -12.6  |
| TOTAL                                 | -566.1 | -617.9       | -558.3 |

### Table 4.7: Consumption Spending Impacts

Of the consumption categories shown in Table 4.7 above, the largest impacts pertain to items with a large locally produced component: housing, health care, and general services. These lower levels of spending support less activity and employment in the industries that provide them, which explains the employment impacts described earlier in this section. But even consumer spending on items such as new cars made outside the state has important impacts here on Montana transportation, retailing and finance and insurance businesses. The table provides another way of translating the economic impacts of 111(d) into the prospects for businesses around the state.

### Summary

The actions taken to bring about compliance with the 111(d) regulation in Montana, while continuing to provide reliable electric power to customers across the state, ultimately cause the economy to be smaller, less prosperous, and less populous. This analysis has detailed the changes in employment, income, tax revenue, spending and population that such actions could bring about. While some of the building and operating of replacement capacity to offset the retirement of coal-fired generation would have positive impacts, on balance the compliance actions produce a significant contraction in economic activity statewide.

We find that compared to a baseline, status quo projection of the state economy, compliance actions mandated by 111(d) would:

- reduce employment statewide by more than 7,100 jobs, which have average annual earnings of more than \$65,000;
- cause a loss of more than a half billion dollars of income received by Montana households;
- reduce gross receipts of Montana businesses and other organizations by more the \$1.5 billion;
- produce a contraction of \$145 million in state revenues, as well as a loss of property tax revenue paid to local jurisdictions of more than \$45 million;
- ultimately reduce state population by more than 10,000 people, with a reduction in school-aged population of over 3,000.

These findings make it clear that 111(d) could be a significant event for the Montana economy. Indeed, in the scenario presented here the loss in personal income caused by compliance with the regulation is roughly half as large as the downturn that occurred during the Great Recession years for the state.

The question for many is, why are these impacts so sharply negative? We believe that there are several reasons that could be offered.

The first and perhaps the most obvious is that the operations of the Colstrip SES ultimately support a lot of economic activity across the state. That was the clear conclusion of the 2010 study, and those impacts are quite apparent in this analysis as well. In terms of economic activity, this facility – including the adjacent mine – is a powerful generator of wealth as well as electricity. Its purchases are dominated by a made-in-Montana product – coal – it is capital intensive and thus pays high wages, and it exports a high value product outside the state, thus bringing income from the spending of those outside Montana back to the state.

Closing that facility before the end of its productive life terminates those benefits. Bringing on new capacity – and paying for it – before the end of the old capacity's productive life entails higher costs than would otherwise be the case.

Another factor that is prominent in these results is what might be call the "terms of trade" between coal-fired generators and other sources of power generation. What replaces Colstrip has a much smaller economic footprint. Not only is the natural gas-fired 250 MW generator considered in this study much smaller from a capacity point of view, the number of jobs it supports is a tiny fraction of those supported by Colstrip. Part of this is due to the fuel and the technology – for example, there are no material-handling processes at work in a natural gas plant as there are for a coal-fired generator.

Finally there is the important role that the Colstrip generator plays in our state's power grid. Because of Colstrip, we have a high capacity 500 KV line that greatly facilitates the import and export of power. Because of Colstrip, purchasers of power in the state see lower prices. Because of Colstrip, Montana has been a net exporter of electrical energy for more than 30 years. All of these advantages could be seriously challenged, if not reversed, in a future that complies with 111(d), and that is why the ultimate economic outcomes have turned out as described in this report.

#### 5. Summary and Conclusions

This report has detailed the findings of an analysis conducted by the University of Montana's Bureau of Business and Economic Research to address the implications of the Environmental Protection Agency's Clean Power Plan for the Montana economy. The plan, referred to as 111(d) in reference to the section of the Clean Air Act that is cited as the authority for it promulgation, sets a CO2 emission rate goal for Montana in 2030 that is the largest of that set for any other state. It mandates a plan, and ultimately a set of actions by the state to bring its CO2 emissions from electric generation units on a trajectory to meet the 2030 target beginning in 2022.

While Montana's actual compliance plan has not yet been formulated, the power generation landscape of our state, combined with the magnitude of the CO2 emission reduction mandated by 111(d), constrain our choice set and make at least the basic elements of any plan apparent. A significant portion of our current coal-fired generation will be prematurely retired, and a significant new investment in new generation that can comply with the regulation will be required. Understanding how that kind of transformation could come about, the investments and costs it would entail, and ultimately how the economy as a whole would perform as a result has been the objective of this study.

Our basic finding is that the circumstances of the Montana economy, the central role played by coal-fired generation on our power grid, and the size of the CO2 emissions reduction required by 111(d) combine to make compliance with the regulation costly to the state economy in terms of jobs, income, production and sales.

#### 6. References

Amlim, Jeff. "The New Clean Power Plan: Analyzing Impacts of States' Compliance Options," Systematic Solutions, Inc., September 2015.

"Analysis of the Impacts of the Clean Power Plan," U.S. Energy Information Administration, May 2015.

Barkey, P.M. and P. E. Polzin, "The Economic Contribution of Colstrip Steam Electric Station Units 1-4," prepared for The Colstrip Steam Electric Station Owners, November 2010.

Caldwell, John. "The U.S. Electricity Industry in Transition," John Edison Electric Institute, prepared for NABE Energy Roundtable Series, June 2013.

"Clean Power Plan: State at a Glance," U.S. Environmental Protection Agency, August 2015.

Grant, Annalee. "Some states still have long road to Clean Power Plan compliance," SNL Financial, August 2015.

Henrikson, Craig, et al. "Options for Montana's Energy Future," Montana Department of Environmental Quality, 2014.

Nystrom, Scott and Luckow, Patrick. "The Economic, Climate, Fiscal, Power, and Demographic Impact of a National Fee-and-Dividend Carbon Tax," Regional Economic Models, Inc. and Synapse Energy Economics, Inc., prepared for Citizens' Climate Lobby, June 2014.

"Potential Energy Impacts of the EPA Proposed Clean Power Plan," NERA Economic Consulting, prepared for American Coalition for Clean Coal Electricity, American Fuel & Petrochemical Manufacturers, Association of American Railroads, American Farm Bureau Federation, Electric Reliability Coordinating Council, Consumer Energy Alliance, and National Mining Association, October 2014.

Ramseur, Jonathan and McCarthy, James. "EPA's Clean Power Plan: Highlights of the Final Rule," Congressional Research Service, August 2015.

Treyz, George I., Regional Economic Modeling: A Systematic Approach to Economic Forecasting and Policy Analysis, 1993. Norwell: Kluwer Academic Publishers.

"Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants," U.S. Energy Information Administration, April 2013.

"2015 Procurement Plan Thermal Resource Specifications," Lands Energy Consulting, prepared for NorthWestern Energy ETAC, June 2015.

# Alternative Forecast Economic Summary

#### Z:\Colstrip\REMI Analysis\REMI Workbooks\Clean Power Plan\_final.rwb

Regional Simulation 3 - Levels

Region = All Regions

#### **Economic Summary**

| Category                        | Units                      | 2019      | 2020       | 2021       | 2022       | 2023       | 2024       | 2025       | 2026       | 2027       | 2028       |
|---------------------------------|----------------------------|-----------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Total Employment                | Thousands (Jobs)           | 688.191   | 691.949    | 694.376    | 690.377    | 689.417    | 688.721    | 687.986    | 687.301    | 687.107    | 686.671    |
| Private Non-Farm Employment     | Thousands (Jobs)           | 566.666   | 570.941    | 573.929    | 571.137    | 571.222    | 571.358    | 571.707    | 571.894    | 572.540    | 572.880    |
| Residence Adjusted Employment   | Thousands                  | 679.968   | 683.765    | 686.231    | 682.298    | 681.400    | 680.748    | 680.062    | 679.419    | 679.259    | 678.855    |
| Population                      | Thousands                  | 1049.267  | 1057.978   | 1066.739   | 1073.705   | 1080.443   | 1086.927   | 1093.065   | 1099.103   | 1105.055   | 1110.816   |
| Labor Force                     | Thousands                  | 526.114   | 529.147    | 532.158    | 533.900    | 536.605    | 539.213    | 541.612    | 544.309    | 547.177    | 550.303    |
| Gross Domestic Product          | Millions of Fixed (2015) [ | 55413.991 | 56820.978  | 58064.153  | 58305.078  | 59321.184  | 60378.726  | 61414.109  | 62508.904  | 63636.408  | 64770.609  |
| Output                          | Millions of Fixed (2015) [ | 98036.401 | 100249.969 | 102186.810 | 102656.528 | 104313.106 | 106123.856 | 107856.084 | 109623.789 | 111396.593 | 113252.916 |
| Value Added                     | Millions of Fixed (2015) [ | 56976.235 | 58399.758  | 59662.241  | 59921.059  | 60954.839  | 62030.600  | 63084.310  | 64198.901  | 65346.767  | 66500.203  |
| Personal Income                 | Millions of Fixed (2015) [ | 46276.683 | 47664.005  | 49059.507  | 50191.889  | 51292.854  | 52396.893  | 53799.180  | 55120.973  | 56372.688  | 57568.231  |
| Disposable Personal Income      | Millions of Fixed (2015) [ | 40684.566 | 41882.150  | 43081.630  | 44076.969  | 45001.265  | 45918.099  | 47137.462  | 48282.567  | 49353.183  | 50366.264  |
| Real Disposable Personal Income | Millions of Fixed (2015) [ | 40684.566 | 41881.365  | 43079.039  | 43912.112  | 44845.419  | 45766.237  | 46988.099  | 48133.839  | 49203.926  | 50215.640  |
| PCE-Price Index                 | 2009=100 (Nation)          | 129.019   | 131.630    | 134.282    | 137.473    | 140.208    | 143.014    | 145.858    | 148.747    | 151.683    | 154.691    |

# Alternative Forecast Economic Summary

Z:\Colstrip\REMI Analysis\REMI Workbooks\Clean Power Plan\_final.rwb

Regional Simulation 3 - Levels

Region = All Regions

#### Economic Summary

| 2029       | 2030       | 2035       | 2045       | 2055       |
|------------|------------|------------|------------|------------|
| 685.930    | 685.471    | 698.613    | 731.245    | 768.738    |
| 572.922    | 573.251    | 591.328    | 631.427    | 673.145    |
| 678.153    | 677.737    | 691.220    | 724.454    | 762.354    |
| 1116.267   | 1121.416   | 1143.680   | 1179.911   | 1232.121   |
| 553.648    | 556.844    | 572.313    | 612.877    | 644.445    |
| 65922.950  | 67099.260  | 72195.004  | 83999.057  | 98336.952  |
| 115086.367 | 116893.691 | 125129.909 | 144387.448 | 167359.887 |
| 67672.102  | 68868.475  | 74032.399  | 85975.591  | 100446.789 |
| 58713.602  | 59818.906  | 63413.440  | 72119.097  | 85148.973  |
| 51326.185  | 52242.597  | 55192.144  | 62265.348  | 72819.489  |
| 51173.625  | 52087.735  | 55024.972  | 62108.322  | 72627.368  |
| 157.747    | 160.848    | 177.433    | 216.030    | 263.564    |
|            |            |            |            |            |

### Alternative Forecast

Employment | Industry | Private Non-Farm | Private Non-Farm Employment | Sector Level

Z:\Colstrip\REMI Analysis\REMI Workbooks\Clean Power Plan\_final.rwb

Regional Simulation 3 - Levels

Region = All Regions

| Category                                    | Units            | 2019   | 2020   | 2021   | 2022   | 2023   | 2024   | 2025   | 2026   | 2027   | 2028   |
|---------------------------------------------|------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Forestry, Fishing, and Related Activities   | Thousands (Jobs) | 7.442  | 7.350  | 7.273  | 7.193  | 7.118  | 7.039  | 6.961  | 6.870  | 6.780  | 6.684  |
| Mining                                      | Thousands (Jobs) | 16.807 | 16.871 | 16.954 | 16.440 | 16.442 | 16.454 | 16.482 | 16.496 | 16.519 | 16.519 |
| Utilities                                   | Thousands (Jobs) | 2.938  | 2.949  | 2.887  | 2.379  | 2.333  | 2.289  | 2.245  | 2.201  | 2.158  | 2.117  |
| Construction                                | Thousands (Jobs) | 57.039 | 58.983 | 60.223 | 59.745 | 59.874 | 60.217 | 60.463 | 61.056 | 61.771 | 62.514 |
| Manufacturing                               | Thousands (Jobs) | 22.673 | 22.586 | 22.544 | 22.470 | 22.441 | 22.407 | 22.385 | 22.337 | 22.306 | 22.260 |
| Wholesale Trade                             | Thousands (Jobs) | 20.486 | 20.449 | 20.364 | 20.153 | 20.017 | 19.890 | 19.776 | 19.640 | 19.512 | 19.383 |
| Retail Trade                                | Thousands (Jobs) | 78.635 | 78.906 | 78.928 | 78.112 | 77.656 | 77.197 | 76.778 | 76.295 | 75.825 | 75.299 |
| Transportation and Warehousing              | Thousands (Jobs) | 19.769 | 19.588 | 19.422 | 19.194 | 19.006 | 18.831 | 18.679 | 18.520 | 18.383 | 18.252 |
| Information                                 | Thousands (Jobs) | 7.881  | 7.729  | 7.582  | 7.408  | 7.253  | 7.107  | 6.976  | 6.849  | 6.738  | 6.627  |
| Finance and Insurance                       | Thousands (Jobs) | 28.420 | 28.466 | 28.440 | 28.192 | 28.042 | 27.899 | 27.799 | 27.653 | 27.538 | 27.425 |
| Real Estate and Rental and Leasing          | Thousands (Jobs) | 29.548 | 29.667 | 29.778 | 29.775 | 29.808 | 29.834 | 29.877 | 29.884 | 29.902 | 29.901 |
| Professional, Scientific, and Technical Ser | Thousands (Jobs) | 39.075 | 39.585 | 40.090 | 40.382 | 40.761 | 41.173 | 41.622 | 42.036 | 42.490 | 42.936 |
| Management of Companies and Enterprise      | Thousands (Jobs) | 2.312  | 2.285  | 2.258  | 2.217  | 2.184  | 2.153  | 2.124  | 2.092  | 2.063  | 2.035  |
| Administrative and Waste Management Se      | Thousands (Jobs) | 28.225 | 28.465 | 28.669 | 28.747 | 28.855 | 28.967 | 29.099 | 29.197 | 29.305 | 29.406 |
| Educational Services                        | Thousands (Jobs) | 9.393  | 9.475  | 9.541  | 9.547  | 9.569  | 9.580  | 9.594  | 9.590  | 9.594  | 9.584  |
| Health Care and Social Assistance           | Thousands (Jobs) | 81.062 | 82.238 | 83.405 | 84.239 | 85.189 | 85.977 | 86.753 | 87.419 | 88.185 | 88.860 |
| Arts, Entertainment, and Recreation         | Thousands (Jobs) | 20.721 | 20.777 | 20.843 | 20.808 | 20.837 | 20.856 | 20.898 | 20.921 | 20.953 | 20.972 |
| Accommodation and Food Services             | Thousands (Jobs) | 58.571 | 58.905 | 59.134 | 58.907 | 58.826 | 58.705 | 58.609 | 58.453 | 58.320 | 58.127 |
| Other Services, except Public Administrati  | Thousands (Jobs) | 35.669 | 35.667 | 35.594 | 35.229 | 35.010 | 34.780 | 34.588 | 34.384 | 34.197 | 33.981 |

### Alternative Forecast

Employment | Industry | Private Non-Farm | Private Non-Farm Employment | Sector Level

Z:\Colstrip\REMI Analysis\REMI Workbooks\Clean Power Plan\_final.rwb

Regional Simulation 3 - Levels

Region = All Regions

| 2029   | 2030   | 2035   | 2045    | 2055    |
|--------|--------|--------|---------|---------|
| 6.583  | 6.482  | 6.144  | 5.510   | 4.856   |
| 16.507 | 16.501 | 16.938 | 17.886  | 18.700  |
| 2.074  | 2.032  | 1.886  | 1.622   | 1.375   |
| 63.253 | 64.047 | 69.945 | 81.730  | 92.323  |
| 22.210 | 22.174 | 22.669 | 23.746  | 24.624  |
| 19.244 | 19.114 | 18.990 | 18.531  | 17.727  |
| 74.697 | 74.108 | 73.009 | 70.887  | 68.653  |
| 18.124 | 18.018 | 18.125 | 18.392  | 18.505  |
| 6.516  | 6.414  | 6.090  | 5.492   | 4.924   |
| 27.284 | 27.178 | 27.339 | 27.763  | 28.179  |
| 29.878 | 29.864 | 30.565 | 32.010  | 33.417  |
| 43.386 | 43.863 | 47.595 | 55.706  | 64.283  |
| 2.006  | 1.978  | 1.899  | 1.722   | 1.526   |
| 29.489 | 29.581 | 30.887 | 33.545  | 36.155  |
| 9.562  | 9.548  | 9.698  | 9.887   | 9.844   |
| 89.490 | 90.136 | 96.612 | 112.379 | 131.548 |
| 20.979 | 21.000 | 21.637 | 23.081  | 24.843  |
| 57.888 | 57.668 | 57.875 | 58.354  | 58.751  |
| 33.752 | 33.546 | 33.426 | 33.184  | 32.911  |

# Alternative Forecast Employment | Industry | Government

Z:\Colstrip\REMI Analysis\REMI Workbooks\Clean Power Plan\_final.rwb

Regional Simulation 3 - Levels

Region = All Regions

| Category         | Units            | 2019   | 2020   | 2021   | 2022   | 2023   | 2024   | 2025   | 2026   | 2027   | 2028   |
|------------------|------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| State and Local  | Thousands (Jobs) | 76.095 | 76.302 | 76.422 | 75.916 | 75.444 | 75.155 | 74.592 | 74.269 | 73.965 | 73.696 |
| Federal Civilian | Thousands (Jobs) | 12.364 | 12.235 | 12.114 | 11.993 | 11.875 | 11.763 | 11.671 | 11.579 | 11.498 | 11.430 |
| Federal Military | Thousands (Jobs) | 7.721  | 7.674  | 7.638  | 7.610  | 7.565  | 7.522  | 7.483  | 7.441  | 7.408  | 7.376  |

# Alternative Forecast Employment | Industry | Government

Z:\Colstrip\REMI Analysis\REMI Workbooks\Clean Power Plan\_final.rwb

Regional Simulation 3 - Levels

Region = All Regions

| 2029   | 2030   | 2035   | 2045   | 2055   |
|--------|--------|--------|--------|--------|
| 73.415 | 73.125 | 70.867 | 67.587 | 66.529 |
| 11.375 | 11.334 | 11.138 | 10.858 | 10.643 |
| 7.341  | 7.303  | 6.980  | 6.416  | 5.987  |

## Alternative Forecast Personal Income

#### Z:\Colstrip\REMI Analysis\REMI Workbooks\Clean Power Plan\_final.rwb

**Regional Simulation 3** – Levels **Region = All Regions** 

Personal Income

| Category                                   | Units                      | 2019      | 2020      | 2021      | 2022      | 2023      | 2024      | 2025      | 2026      | 2027      | 2028      |
|--------------------------------------------|----------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Total Earnings by Place of Work            | Millions of Fixed (2015) [ | 29985.958 | 30813.390 | 31573.639 | 31937.788 | 32538.175 | 33155.721 | 33758.308 | 34359.054 | 34980.845 | 35602.452 |
| Total Wages and Salaries                   | Millions of Fixed (2015) [ | 20114.024 | 20674.617 | 21188.149 | 21416.151 | 21819.588 | 22233.256 | 22631.711 | 23027.137 | 23435.994 | 23843.562 |
| Supplements to Wages and Salaries          | Millions of Fixed (2015) [ | 5193.899  | 5337.617  | 5471.904  | 5531.059  | 5637.875  | 5747.068  | 5854.578  | 5961.032  | 6070.349  | 6179.607  |
| Employer contributions for employee pe     | Millions of Fixed (2015) [ | 3332.394  | 3424.115  | 3510.305  | 3552.179  | 3623.108  | 3696.504  | 3765.205  | 3833.278  | 3903.189  | 3973.042  |
| Employer contributions for government      | Millions of Fixed (2015) [ | 1861.505  | 1913.502  | 1961.599  | 1978.881  | 2014.767  | 2050.564  | 2089.373  | 2127.754  | 2167.160  | 2206.565  |
| Proprietors' income with inventory value   | Millions of Fixed (2015) [ | 4638.924  | 4758.249  | 4869.439  | 4936.855  | 5026.238  | 5121.569  | 5218.914  | 5316.861  | 5419.654  | 5524.283  |
| Less: Contributions for Government Social  | Millions of Fixed (2015) [ | 3811.539  | 3917.977  | 4015.761  | 4046.450  | 4118.004  | 4188.998  | 4267.406  | 4344.523  | 4423.889  | 4503.190  |
| Employee and Self-Employed Contribution    | Millions of Fixed (2015)   | 1950.034  | 2004.475  | 2054.162  | 2067.569  | 2103.237  | 2138.434  | 2178.033  | 2216.768  | 2256.729  | 2296.625  |
| Employer contributions for government s    | Millions of Fixed (2015) [ | 1861.505  | 1913.502  | 1961.599  | 1978.881  | 2014.767  | 2050.564  | 2089.373  | 2127.754  | 2167.160  | 2206.565  |
| Plus: Adjustment for Residence             | Millions of Fixed (2015) [ | 68.792    | 69.765    | 71.279    | 77.012    | 79.863    | 82.005    | 84.748    | 86.685    | 88.569    | 90.488    |
| Gross Inflow                               | Millions of Fixed (2015) [ | 726.996   | 745.972   | 763.949   | 774.810   | 791.041   | 807.400   | 823.215   | 838.448   | 853.997   | 869.476   |
| Gross Outflow                              | Millions of Fixed (2015) [ | 658.204   | 676.207   | 692.670   | 697.798   | 711.178   | 725.396   | 738.467   | 751.763   | 765.428   | 778.988   |
| Equals: Net Earnings by Place of Residence | Millions of Fixed (2015)   | 26482.144 | 27204.921 | 27877.255 | 28180.663 | 28723.325 | 29286.383 | 29826.759 | 30359.897 | 30911.513 | 31464.376 |
| Plus: Property Income                      | Millions of Fixed (2015) [ | 11025.594 | 11390.245 | 11765.687 | 12137.073 | 12483.961 | 12828.816 | 13177.269 | 13503.275 | 13829.493 | 14154.171 |
| Personal Dividend Income                   | Millions of Fixed (2015) [ | 3980.814  | 4152.164  | 4330.108  | 4509.246  | 4679.978  | 4852.335  | 5028.446  | 5196.256  | 5366.298  | 5537.889  |
| Personal Interest Income                   | Millions of Fixed (2015) [ | 4468.032  | 4610.248  | 4756.132  | 4899.644  | 5032.830  | 5164.486  | 5296.854  | 5419.835  | 5542.193  | 5663.207  |
| Rental Income of Persons                   | Millions of Fixed (2015) [ | 2576.748  | 2627.833  | 2679.447  | 2728.183  | 2771.153  | 2811.996  | 2851.969  | 2887.185  | 2921.002  | 2953.074  |
| Plus: Personal Current Transfer Receipts   | Millions of Fixed (2015) [ | 8768.946  | 9068.839  | 9416.565  | 9874.153  | 10085.569 | 10281.694 | 10795.152 | 11257.800 | 11631.682 | 11949.684 |
| Equals: Personal Income                    | Millions of Fixed (2015) [ | 46276.683 | 47664.005 | 49059.507 | 50191.889 | 51292.854 | 52396.893 | 53799.180 | 55120.973 | 56372.688 | 57568.231 |
| Less: Personal current taxes               | Millions of Fixed (2015) [ | 5592.118  | 5781.855  | 5977.876  | 6114.920  | 6291.589  | 6478.794  | 6661.718  | 6838.406  | 7019.504  | 7201.967  |
| Equals: Disposable personal income         | Millions of Fixed (2015) [ | 40684.566 | 41882.150 | 43081.630 | 44076.969 | 45001.265 | 45918.099 | 47137.462 | 48282.567 | 49353.183 | 50366.264 |

### Alternative Forecast Personal Income

Z:\Colstrip\REMI Analysis\REMI Workbooks\Clean Power Plan\_final.rwb

**Regional Simulation 3** – Levels

Region = All Regions

Personal Income

| 2029      | 2030      | 2035      | 2045      | 2055      |
|-----------|-----------|-----------|-----------|-----------|
| 36237.460 | 36887.709 | 38988.145 | 44091.007 | 51256.314 |
| 24259.606 | 24685.691 | 26028.700 | 29359.879 | 34157.090 |
| 6290.485  | 6403.698  | 6753.041  | 7627.415  | 8885.551  |
| 4043.918  | 4116.279  | 4338.908  | 4896.449  | 5699.905  |
| 2246.567  | 2287.419  | 2414.133  | 2730.967  | 3185.646  |
| 5630.975  | 5740.406  | 6114.368  | 6929.106  | 7934.744  |
| 4583.651  | 4665.842  | 4918.578  | 5548.821  | 6456.312  |
| 2337.084  | 2378.424  | 2504.445  | 2817.854  | 3270.665  |
| 2246.567  | 2287.419  | 2414.133  | 2730.967  | 3185.646  |
| 92.539    | 94.714    | 101.817   | 118.046   | 136.245   |
| 885.088   | 901.063   | 949.991   | 1068.454  | 1238.601  |
| 792.550   | 806.349   | 848.174   | 950.408   | 1102.356  |
| 32025.875 | 32600.198 | 34387.467 | 38719.019 | 44801.576 |
| 14477.430 | 14797.683 | 15932.014 | 18834.160 | 23095.873 |
| 5711.062  | 5885.171  | 6556.887  | 8274.041  | 10785.980 |
| 5782.910  | 5900.650  | 6301.980  | 7307.583  | 8753.719  |
| 2983.459  | 3011.863  | 3073.147  | 3252.536  | 3556.173  |
| 12210.297 | 12421.025 | 13093.959 | 14565.918 | 17251.524 |
| 58713.602 | 59818.906 | 63413.440 | 72119.097 | 85148.973 |
| 7387.417  | 7576.309  | 8221.295  | 9853.749  | 12329.484 |
| 51326.185 | 52242.597 | 55192.144 | 62265.348 | 72819.489 |

# Alternative Forecast Output and Demand | Output | Private Non-Farm | Sector Level

Z:\Colstrip\REMI Analysis\REMI Workbooks\Clean Power Plan\_final.rwb

Regional Simulation 3 - Levels

Region = All Regions

| Category                                    | Units                      | 2019      | 2020      | 2021      | 2022      | 2023      | 2024      | 2025      | 2026      | 2027      | 2028      |
|---------------------------------------------|----------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Forestry, Fishing, and Related Activities   | Millions of Fixed (2015) [ | 476.131   | 482.664   | 490.080   | 497.152   | 504.315   | 511.676   | 518.540   | 524.501   | 529.969   | 535.313   |
| Mining                                      | Millions of Fixed (2015) [ | 6231.591  | 6324.532  | 6431.109  | 6238.806  | 6331.978  | 6433.764  | 6531.658  | 6621.725  | 6707.661  | 6791.330  |
| Utilities                                   | Millions of Fixed (2015) [ | 2160.062  | 2247.413  | 2280.044  | 1845.365  | 1875.589  | 1907.948  | 1940.300  | 1970.556  | 2000.373  | 2031.719  |
| Construction                                | Millions of Fixed (2015) [ | 6235.765  | 6638.074  | 6899.876  | 6946.921  | 7091.764  | 7273.045  | 7404.520  | 7618.056  | 7844.758  | 8088.875  |
| Manufacturing                               | Millions of Fixed (2015) [ | 13041.912 | 13279.982 | 13516.131 | 13708.028 | 13952.779 | 14220.137 | 14490.401 | 14754.186 | 15018.858 | 15296.523 |
| Wholesale Trade                             | Millions of Fixed (2015) [ | 4473.143  | 4604.263  | 4722.867  | 4808.926  | 4923.259  | 5047.232  | 5172.249  | 5293.989  | 5415.287  | 5544.249  |
| Retail Trade                                | Millions of Fixed (2015) [ | 6994.319  | 7213.271  | 7408.067  | 7518.336  | 7679.661  | 7851.528  | 8022.750  | 8190.395  | 8354.186  | 8522.836  |
| Transportation and Warehousing              | Millions of Fixed (2015) [ | 4109.113  | 4176.659  | 4244.227  | 4294.781  | 4362.703  | 4438.151  | 4514.980  | 4590.019  | 4666.181  | 4748.945  |
| Information                                 | Millions of Fixed (2015) [ | 2775.758  | 2830.460  | 2886.133  | 2928.403  | 2985.039  | 3046.424  | 3108.452  | 3168.587  | 3228.363  | 3291.163  |
| Finance and Insurance                       | Millions of Fixed (2015) [ | 5871.196  | 6016.678  | 6139.603  | 6211.298  | 6315.625  | 6429.432  | 6546.118  | 6657.637  | 6769.060  | 6887.409  |
| Real Estate and Rental and Leasing          | Millions of Fixed (2015) [ | 6650.748  | 6789.382  | 6921.395  | 7020.021  | 7143.275  | 7274.499  | 7405.062  | 7528.661  | 7649.781  | 7775.830  |
| Professional, Scientific, and Technical Ser | Millions of Fixed (2015) [ | 4417.285  | 4542.727  | 4664.737  | 4757.974  | 4874.011  | 4999.618  | 5127.392  | 5254.134  | 5382.122  | 5517.580  |
| Management of Companies and Enterprise      | Millions of Fixed (2015) [ | 442.864   | 454.935   | 466.530   | 474.764   | 485.835   | 497.970   | 510.191   | 522.170   | 534.228   | 547.200   |
| Administrative and Waste Management Se      | Millions of Fixed (2015) [ | 1804.299  | 1840.900  | 1874.805  | 1897.938  | 1926.455  | 1957.248  | 1988.163  | 2017.325  | 2045.764  | 2075.841  |
| Educational Services                        | Millions of Fixed (2015) [ | 378.943   | 385.672   | 391.431   | 394.224   | 398.437   | 402.686   | 406.661   | 409.892   | 413.055   | 416.065   |
| Health Care and Social Assistance           | Millions of Fixed (2015) [ | 8113.298  | 8304.075  | 8492.315  | 8647.420  | 8829.181  | 9006.083  | 9174.997  | 9333.701  | 9495.313  | 9658.955  |
| Arts, Entertainment, and Recreation         | Millions of Fixed (2015) [ | 900.709   | 913.847   | 926.909   | 934.625   | 947.360   | 960.867   | 974.603   | 987.547   | 1000.255  | 1013.433  |
| Accommodation and Food Services             | Millions of Fixed (2015) [ | 3947.122  | 4029.847  | 4103.476  | 4141.218  | 4197.339  | 4255.380  | 4311.735  | 4363.779  | 4413.529  | 4463.496  |
| Other Services, except Public Administrati  | Millions of Fixed (2015) [ | 2204.067  | 2232.201  | 2254.832  | 2257.302  | 2274.037  | 2292.870  | 2311.928  | 2330.671  | 2348.726  | 2367.415  |

### Alternative Forecast

## Output and Demand | Output | Private Non-Farm | Sector Level

Z:\Colstrip\REMI Analysis\REMI Workbooks\Clean Power Plan\_final.rwb

Regional Simulation 3 - Levels

Region = All Regions

| 2029      | 2030      | 2035      | 2045      | 2055      |
|-----------|-----------|-----------|-----------|-----------|
| 540.192   | 544.523   | 560.083   | 593.048   | 611.163   |
| 6869.283  | 6940.596  | 7225.232  | 7871.372  | 8504.490  |
| 2062.134  | 2091.743  | 2214.900  | 2490.423  | 2778.357  |
| 8338.816  | 8594.181  | 9877.148  | 12871.174 | 16404.974 |
| 15572.548 | 15846.701 | 17111.821 | 19859.675 | 22773.603 |
| 5672.902  | 5801.136  | 6423.025  | 7838.046  | 9488.343  |
| 8685.532  | 8843.340  | 9552.633  | 11223.878 | 13307.487 |
| 4833.307  | 4919.378  | 5351.811  | 6334.041  | 7416.026  |
| 3352.630  | 3412.619  | 3687.507  | 4315.420  | 5063.915  |
| 7004.045  | 7120.338  | 7655.615  | 8935.277  | 10538.741 |
| 7898.663  | 8018.072  | 8542.301  | 9757.714  | 11222.930 |
| 5654.821  | 5793.069  | 6468.496  | 8057.248  | 9996.637  |
| 560.249   | 573.347   | 637.821   | 782.519   | 948.806   |
| 2105.130  | 2133.992  | 2261.084  | 2551.947  | 2897.125  |
| 418.574   | 420.992   | 427.166   | 437.701   | 443.134   |
| 9820.751  | 9976.297  | 10738.145 | 12689.282 | 15259.464 |
| 1026.331  | 1038.981  | 1091.053  | 1214.828  | 1376.508  |
| 4510.228  | 4553.955  | 4708.993  | 5077.260  | 5520.338  |
| 2385.633  | 2403.528  | 2471.875  | 2636.340  | 2842.676  |

# Alternative Forecast Output and Demand | Output | Government

Z:\Colstrip\REMI Analysis\REMI Workbooks\Clean Power Plan\_final.rwb

Regional Simulation 3 - Levels

Region = All Regions

| Category                   | Units                      | 2019     | 2020     | 2021     | 2022     | 2023     | 2024     | 2025     | 2026     | 2027     | 2028     |
|----------------------------|----------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| State and Local Government | Millions of Fixed (2015) [ | 7796.509 | 7883.464 | 7962.380 | 7980.295 | 8000.562 | 8038.948 | 8051.226 | 8085.215 | 8121.039 | 8160.440 |
| Federal Civilian           | Millions of Fixed (2015) [ | 2429.296 | 2425.939 | 2423.885 | 2421.608 | 2419.586 | 2418.813 | 2421.666 | 2424.611 | 2429.665 | 2437.294 |
| Federal Military           | Millions of Fixed (2015) [ | 2196.971 | 2202.093 | 2210.075 | 2220.326 | 2225.784 | 2231.776 | 2238.956 | 2245.172 | 2253.753 | 2263.073 |

# Alternative Forecast Output and Demand | Output | Government

Z:\Colstrip\REMI Analysis\REMI Workbooks\Clean Power Plan\_final.rwb

Regional Simulation 3 - Levels

Region = All Regions

| 2029     | 2030     | 2035     | 2045     | 2055     |
|----------|----------|----------|----------|----------|
| 8198.485 | 8235.366 | 8324.124 | 8633.086 | 9241.255 |
| 2447.743 | 2461.237 | 2531.198 | 2702.460 | 2901.358 |
| 2271.258 | 2278.468 | 2270.719 | 2269.182 | 2302.108 |

### Alternative Forecast

Compensation and Earnings | Private Non-Farm | Wages and Salaries | Sector Level

Z:\Colstrip\REMI Analysis\REMI Workbooks\Clean Power Plan\_final.rwb

Regional Simulation 3 - Levels

Region = All Regions

| Category                                    | Units                      | 2019     | 2020     | 2021     | 2022     | 2023     | 2024     | 2025     | 2026     | 2027     | 2028     |
|---------------------------------------------|----------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Forestry, Fishing, and Related Activities   | Millions of Fixed (2015) [ | 122.301  | 124.346  | 126.531  | 128.483  | 130.787  | 133.014  | 135.140  | 136.912  | 138.615  | 140.196  |
| Mining                                      | Millions of Fixed (2015) [ | 776.628  | 792.049  | 806.702  | 772.068  | 780.058  | 789.215  | 799.102  | 808.500  | 818.570  | 827.874  |
| Utilities                                   | Millions of Fixed (2015) [ | 219.130  | 229.454  | 233.094  | 187.987  | 191.314  | 194.662  | 197.857  | 200.816  | 203.842  | 206.994  |
| Construction                                | Millions of Fixed (2015) [ | 1536.171 | 1632.541 | 1708.441 | 1720.468 | 1765.631 | 1817.015 | 1863.906 | 1921.697 | 1983.930 | 2048.727 |
| Manufacturing                               | Millions of Fixed (2015) [ | 880.866  | 905.391  | 930.711  | 953.202  | 979.768  | 1006.725 | 1034.211 | 1060.167 | 1086.991 | 1113.716 |
| Wholesale Trade                             | Millions of Fixed (2015) [ | 1015.292 | 1050.008 | 1082.208 | 1106.490 | 1136.148 | 1166.560 | 1197.591 | 1227.077 | 1257.320 | 1288.183 |
| Retail Trade                                | Millions of Fixed (2015) [ | 1714.331 | 1776.282 | 1833.013 | 1868.756 | 1914.932 | 1961.253 | 2008.089 | 2052.413 | 2097.061 | 2141.009 |
| Transportation and Warehousing              | Millions of Fixed (2015) [ | 773.435  | 789.335  | 805.403  | 817.327  | 832.175  | 847.519  | 863.289  | 878.166  | 893.839  | 910.020  |
| Information                                 | Millions of Fixed (2015) [ | 316.461  | 324.440  | 332.571  | 339.011  | 346.210  | 353.600  | 361.278  | 368.635  | 376.418  | 384.082  |
| Finance and Insurance                       | Millions of Fixed (2015) [ | 1082.587 | 1115.978 | 1146.287 | 1166.885 | 1191.752 | 1216.792 | 1243.534 | 1267.515 | 1292.897 | 1318.744 |
| Real Estate and Rental and Leasing          | Millions of Fixed (2015) [ | 197.008  | 202.522  | 207.814  | 211.793  | 216.499  | 221.213  | 225.970  | 230.414  | 234.969  | 239.492  |
| Professional, Scientific, and Technical Ser | Millions of Fixed (2015) [ | 1403.879 | 1450.587 | 1497.084 | 1534.256 | 1576.256 | 1619.677 | 1664.540 | 1707.883 | 1753.255 | 1798.999 |
| Management of Companies and Enterprise      | Millions of Fixed (2015)   | 173.345  | 178.918  | 184.401  | 188.584  | 193.564  | 198.747  | 204.104  | 209.297  | 214.674  | 220.196  |
| Administrative and Waste Management Se      | Millions of Fixed (2015) [ | 561.887  | 576.001  | 589.239  | 599.223  | 610.471  | 621.682  | 633.053  | 643.332  | 653.693  | 664.011  |
| Educational Services                        | Millions of Fixed (2015) [ | 172.956  | 176.885  | 180.452  | 182.671  | 185.176  | 187.461  | 189.684  | 191.423  | 193.246  | 194.801  |
| Health Care and Social Assistance           | Millions of Fixed (2015) [ | 2674.969 | 2750.703 | 2826.513 | 2890.677 | 2960.990 | 3026.845 | 3090.846 | 3148.696 | 3209.217 | 3267.521 |
| Arts, Entertainment, and Recreation         | Millions of Fixed (2015) [ | 313.721  | 319.495  | 325.425  | 329.509  | 335.041  | 340.434  | 345.986  | 351.004  | 356.176  | 361.198  |
| Accommodation and Food Services             | Millions of Fixed (2015) [ | 893.697  | 916.668  | 937.790  | 950.748  | 966.107  | 980.693  | 995.208  | 1007.950 | 1020.802 | 1032.809 |
| Other Services, except Public Administrati  | Millions of Fixed (2015) [ | 608.981  | 621.282  | 631.919  | 636.455  | 644.124  | 651.287  | 658.541  | 664.978  | 671.339  | 677.032  |

### Alternative Forecast

Compensation and Earnings | Private Non-Farm | Wages and Salaries | Sector Level

Z:\Colstrip\REMI Analysis\REMI Workbooks\Clean Power Plan\_final.rwb

Regional Simulation 3 - Levels

Region = All Regions

| 2029     | 2030     | 2035     | 2045     | 2055     |
|----------|----------|----------|----------|----------|
| 141.740  | 143.221  | 144.222  | 147.372  | 152.973  |
| 837.597  | 847.903  | 867.718  | 917.578  | 993.506  |
| 210.140  | 213.090  | 219.370  | 233.983  | 255.111  |
| 2116.376 | 2187.238 | 2468.729 | 3119.882 | 3948.086 |
| 1141.039 | 1169.259 | 1268.729 | 1500.989 | 1794.748 |
| 1319.875 | 1352.646 | 1467.032 | 1728.809 | 2072.658 |
| 2184.844 | 2229.270 | 2358.816 | 2675.088 | 3139.860 |
| 927.112  | 945.279  | 1006.759 | 1150.113 | 1334.105 |
| 391.881  | 400.042  | 424.493  | 482.062  | 563.181  |
| 1344.542 | 1372.267 | 1455.143 | 1663.644 | 1971.314 |
| 244.135  | 248.933  | 262.882  | 296.302  | 343.867  |
| 1847.055 | 1897.045 | 2075.138 | 2494.369 | 3062.678 |
| 225.899  | 231.825  | 252.968  | 300.162  | 361.148  |
| 674.487  | 685.155  | 711.198  | 774.237  | 869.512  |
| 196.238  | 197.781  | 196.261  | 193.101  | 192.507  |
| 3327.034 | 3386.776 | 3570.353 | 4071.605 | 4848.779 |
| 366.373  | 371.774  | 382.809  | 412.693  | 465.519  |
| 1044.736 | 1056.817 | 1069.533 | 1110.424 | 1192.640 |
| 682.840  | 688.936  | 690.700  | 700.731  | 732.951  |

# Alternative Forecast Population | Four Age Groups | All Races

Z:\Colstrip\REMI Analysis\REMI Workbooks\Clean Power Plan\_final.rwb

Regional Simulation 3 - Levels

**Region = All Regions** 

All Races

| Category   | Units     | 2019    | 2020    | 2021    | 2022    | 2023    | 2024    | 2025    | 2026    | 2027    | 2028    |
|------------|-----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Ages 0-14  | Thousands | 189.147 | 190.496 | 191.703 | 192.072 | 192.655 | 193.349 | 194.158 | 195.142 | 195.989 | 196.844 |
| Ages 15-24 | Thousands | 120.068 | 119.311 | 119.982 | 120.737 | 121.405 | 121.925 | 122.233 | 122.260 | 122.650 | 122.885 |
| Ages 25-64 | Thousands | 533.241 | 534.122 | 534.023 | 532.905 | 531.721 | 530.969 | 530.036 | 529.637 | 529.764 | 530.445 |
| Ages 65+   | Thousands | 206.811 | 214.049 | 221.031 | 227.991 | 234.663 | 240.684 | 246.638 | 252.065 | 256.652 | 260.642 |
|            |           |         |         |         |         |         |         |         |         |         |         |

# Alternative Forecast Population | Four Age Groups | All Races

Z:\Colstrip\REMI Analysis\REMI Workbooks\Clean Power Plan\_final.rwb

Regional Simulation 3 - Levels

Region = All Regions

#### All Races

| 2029    | 2030    | 2035    | 2045    | 2055    |
|---------|---------|---------|---------|---------|
| 197.633 | 198.143 | 197.898 | 198.217 | 208.971 |
| 123.056 | 123.284 | 125.054 | 130.238 | 130.498 |
| 531.609 | 533.701 | 550.693 | 581.977 | 603.769 |
| 263.968 | 266.288 | 270.035 | 269.478 | 288.883 |
|         |         |         |         |         |

# Baseline Forecast Economic Summary

#### Z:\Colstrip\REMI Analysis\REMI Workbooks\Clean Power Plan\_final.rwb

Regional Simulation 1 - Levels

Region = All Regions

#### **Economic Summary**

| Category                        | Units                            | 2019      | 2020       | 2021       | 2022       | 2023       | 2024       | 2025       | 2026       | 2027       | 2028       |
|---------------------------------|----------------------------------|-----------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Total Employment                | Thousands (Jobs)                 | 688.191   | 691.051    | 693.309    | 695.055    | 695.229    | 694.992    | 695.123    | 694.421    | 694.096    | 693.460    |
| Private Non-Farm Employment     | Thousands (Jobs)                 | 566.666   | 570.108    | 572.972    | 575.359    | 576.168    | 576.534    | 577.284    | 577.317    | 577.734    | 577.806    |
| Residence Adjusted Employment   | Thousands                        | 679.968   | 682.875    | 685.173    | 686.951    | 687.176    | 686.987    | 687.165    | 686.512    | 686.229    | 685.632    |
| Population                      | Thousands                        | 1049.267  | 1057.743   | 1066.278   | 1074.756   | 1082.940   | 1090.772   | 1098.276   | 1105.492   | 1112.449   | 1119.047   |
| Labor Force                     | Thousands                        | 526.114   | 528.963    | 531.817    | 534.480    | 538.212    | 541.679    | 544.931    | 548.257    | 551.601    | 555.086    |
| Gross Domestic Product          | Millions of Fixed (2015) Dollars | 55413.991 | 56661.740  | 57890.462  | 59102.553  | 60214.944  | 61320.162  | 62450.970  | 63557.588  | 64687.880  | 65818.587  |
| Output                          | Millions of Fixed (2015) Dollars | 98036.401 | 100020.246 | 101933.729 | 103776.779 | 105594.147 | 107483.209 | 109367.802 | 111150.419 | 112921.826 | 114767.517 |
| Value Added                     | Millions of Fixed (2015) Dollars | 56976.235 | 58240.809  | 59488.706  | 60722.187  | 61853.900  | 62977.976  | 64128.721  | 65255.046  | 66405.429  | 67555.003  |
| Personal Income                 | Millions of Fixed (2015) Dollars | 46276.683 | 47611.284  | 48993.386  | 50492.785  | 51680.808  | 52838.846  | 54315.114  | 55664.735  | 56934.402  | 58140.358  |
| Disposable Personal Income      | Millions of Fixed (2015) Dollars | 40684.566 | 41837.202  | 43025.190  | 44333.156  | 45331.920  | 46295.204  | 47578.034  | 48747.666  | 49834.425  | 50857.185  |
| Real Disposable Personal Income | Millions of Fixed (2015) Dollars | 40684.566 | 41837.202  | 43025.190  | 44333.156  | 45331.920  | 46295.204  | 47578.034  | 48747.666  | 49834.425  | 50857.185  |
| PCE-Price Index                 | 2009=100 (Nation)                | 129.019   | 131.629    | 134.275    | 136.957    | 139.720    | 142.539    | 145.393    | 148.285    | 151.221    | 154.225    |

# Baseline Forecast Economic Summary

Z:\Colstrip\REMI Analysis\REMI Workbooks\Clean Power Plan\_final.rwb

Regional Simulation 1 - Levels

Region = All Regions

#### Economic Summary

| 2029       | 2030       | 2035       | 2045       | 2055       |
|------------|------------|------------|------------|------------|
| 692.492    | 691.795    | 703.994    | 734.959    | 771.631    |
| 577.572    | 577.631    | 594.752    | 633.434    | 674.575    |
| 684.707    | 684.059    | 696.608    | 728.173    | 765.249    |
| 1125.184   | 1130.884   | 1154.411   | 1189.117   | 1239.049   |
| 558.686    | 562.064    | 577.733    | 617.387    | 648.105    |
| 66965.371  | 68134.991  | 73194.638  | 84917.853  | 99245.308  |
| 116586.142 | 118376.121 | 126537.343 | 145655.491 | 168604.465 |
| 68720.932  | 69910.180  | 75036.199  | 86897.043  | 101357.386 |
| 59291.554  | 60398.854  | 63969.763  | 72601.322  | 85607.857  |
| 51822.812  | 52741.553  | 55673.344  | 62683.068  | 73213.612  |
| 51822.812  | 52741.553  | 55673.344  | 62683.068  | 73213.612  |
| 157.275    | 160.368    | 176.893    | 215.482    | 262.864    |
|            |            |            |            |            |

### **Baseline Forecast**

Employment | Industry | Private Non-Farm | Private Non-Farm Employment | Sector Level

Z:\Colstrip\REMI Analysis\REMI Workbooks\Clean Power Plan\_final.rwb

Regional Simulation 1 - Levels

Region = All Regions

| Category                                         | Units            | 2019   | 2020   | 2021   | 2022   | 2023   | 2024   | 2025   | 2026   | 2027   |
|--------------------------------------------------|------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Forestry, Fishing, and Related Activities        | Thousands (Jobs) | 7.442  | 7.349  | 7.272  | 7.209  | 7.134  | 7.054  | 6.975  | 6.883  | 6.792  |
| Mining                                           | Thousands (Jobs) | 16.807 | 16.851 | 16.927 | 17.040 | 17.075 | 17.088 | 17.102 | 17.092 | 17.088 |
| Utilities                                        | Thousands (Jobs) | 2.938  | 2.873  | 2.814  | 2.763  | 2.702  | 2.642  | 2.584  | 2.525  | 2.469  |
| Construction                                     | Thousands (Jobs) | 57.039 | 58.603 | 59.777 | 60.549 | 61.124 | 61.643 | 62.223 | 62.767 | 63.387 |
| Manufacturing                                    | Thousands (Jobs) | 22.673 | 22.561 | 22.515 | 22.541 | 22.522 | 22.489 | 22.471 | 22.420 | 22.385 |
| Wholesale Trade                                  | Thousands (Jobs) | 20.486 | 20.436 | 20.350 | 20.226 | 20.094 | 19.966 | 19.850 | 19.709 | 19.576 |
| Retail Trade                                     | Thousands (Jobs) | 78.635 | 78.838 | 78.847 | 78.690 | 78.308 | 77.877 | 77.497 | 77.009 | 76.527 |
| Transportation and Warehousing                   | Thousands (Jobs) | 19.769 | 19.580 | 19.413 | 19.267 | 19.081 | 18.902 | 18.747 | 18.581 | 18.437 |
| Information                                      | Thousands (Jobs) | 7.881  | 7.726  | 7.579  | 7.440  | 7.286  | 7.140  | 7.007  | 6.878  | 6.766  |
| Finance and Insurance                            | Thousands (Jobs) | 28.420 | 28.453 | 28.425 | 28.329 | 28.187 | 28.042 | 27.944 | 27.790 | 27.667 |
| Real Estate and Rental and Leasing               | Thousands (Jobs) | 29.548 | 29.649 | 29.756 | 29.872 | 29.920 | 29.952 | 30.000 | 30.005 | 30.020 |
| Professional, Scientific, and Technical Services | Thousands (Jobs) | 39.075 | 39.523 | 40.018 | 40.564 | 40.984 | 41.418 | 41.887 | 42.305 | 42.760 |
| Management of Companies and Enterprises          | Thousands (Jobs) | 2.312  | 2.283  | 2.256  | 2.229  | 2.197  | 2.166  | 2.137  | 2.105  | 2.075  |
| Administrative and Waste Management Services     | Thousands (Jobs) | 28.225 | 28.441 | 28.642 | 28.848 | 28.967 | 29.077 | 29.207 | 29.298 | 29.396 |
| Educational Services                             | Thousands (Jobs) | 9.393  | 9.473  | 9.539  | 9.589  | 9.609  | 9.619  | 9.630  | 9.624  | 9.624  |
| Health Care and Social Assistance                | Thousands (Jobs) | 81.062 | 82.196 | 83.357 | 84.568 | 85.552 | 86.349 | 87.136 | 87.795 | 88.551 |
| Arts, Entertainment, and Recreation              | Thousands (Jobs) | 20.721 | 20.769 | 20.834 | 20.921 | 20.954 | 20.971 | 21.010 | 21.027 | 21.053 |
| Accommodation and Food Services                  | Thousands (Jobs) | 58.571 | 58.873 | 59.095 | 59.254 | 59.212 | 59.109 | 59.036 | 58.878 | 58.738 |
| Other Services, except Public Administration     | Thousands (Jobs) | 35.669 | 35.630 | 35.555 | 35.462 | 35.261 | 35.030 | 34.841 | 34.624 | 34.424 |

### **Baseline Forecast**

Employment | Industry | Private Non-Farm | Private Non-Farm Employment | Sector Level

Z:\Colstrip\REMI Analysis\REMI Workbooks\Clean Power Plan\_final.rwb

Regional Simulation 1 - Levels

Region = All Regions

| 2028   | 2029   | 2030   | 2035   | 2045    | 2055    |
|--------|--------|--------|--------|---------|---------|
| 6.694  | 6.592  | 6.490  | 6.150  | 5.513   | 4.859   |
| 17.060 | 17.021 | 16.988 | 17.348 | 18.223  | 18.999  |
| 2.414  | 2.359  | 2.304  | 2.116  | 1.777   | 1.484   |
| 64.012 | 64.626 | 65.300 | 70.789 | 82.141  | 92.671  |
| 22.335 | 22.280 | 22.240 | 22.721 | 23.773  | 24.638  |
| 19.442 | 19.298 | 19.163 | 19.020 | 18.535  | 17.721  |
| 75.983 | 75.362 | 74.752 | 73.570 | 71.273  | 68.938  |
| 18.299 | 18.166 | 18.056 | 18.152 | 18.415  | 18.527  |
| 6.653  | 6.540  | 6.436  | 6.106  | 5.500   | 4.929   |
| 27.545 | 27.396 | 27.283 | 27.423 | 27.824  | 28.229  |
| 30.013 | 29.986 | 29.967 | 30.648 | 32.062  | 33.460  |
| 43.205 | 43.652 | 44.124 | 47.838 | 55.886  | 64.421  |
| 2.046  | 2.016  | 1.988  | 1.906  | 1.726   | 1.529   |
| 29.486 | 29.559 | 29.640 | 30.898 | 33.469  | 36.036  |
| 9.611  | 9.587  | 9.569  | 9.707  | 9.878   | 9.826   |
| 89.214 | 89.832 | 90.468 | 96.910 | 112.599 | 131.727 |
| 21.066 | 21.068 | 21.083 | 21.698 | 23.106  | 24.850  |
| 58.533 | 58.280 | 58.044 | 58.174 | 58.449  | 58.742  |
| 34.194 | 33.953 | 33.735 | 33.578 | 33.284  | 32.991  |
|        |        |        |        |         |         |

# Baseline Forecast Employment | Industry | Government

Z:\Colstrip\REMI Analysis\REMI Workbooks\Clean Power Plan\_final.rwb

Regional Simulation 1 - Levels

Region = All Regions

| Category         | Units            | 2019   | 2020   | 2021   | 2022   | 2023   | 2024   | 2025   | 2026   | 2027   | 2028   | 2029   | 2030   |
|------------------|------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| State and Local  | Thousands (Jobs) | 76.095 | 76.236 | 76.311 | 76.315 | 76.257 | 76.197 | 76.103 | 75.919 | 75.715 | 75.517 | 75.287 | 75.030 |
| Federal Civilian | Thousands (Jobs) | 12.364 | 12.235 | 12.114 | 11.999 | 11.880 | 11.768 | 11.675 | 11.583 | 11.502 | 11.433 | 11.378 | 11.337 |
| Federal Military | Thousands (Jobs) | 7.721  | 7.674  | 7.638  | 7.612  | 7.567  | 7.524  | 7.485  | 7.443  | 7.410  | 7.378  | 7.343  | 7.305  |

# Baseline Forecast Employment | Industry | Government

Z:\Colstrip\REMI Analysis\REMI Workbooks\Clean Power Plan\_final.rwb

Regional Simulation 1 - Levels

Region = All Regions

| 2035   | 2045   | 2055   |
|--------|--------|--------|
| 72.794 | 69.276 | 67.979 |
| 11.141 | 10.860 | 10.645 |
| 6.982  | 6.417  | 5.987  |
|        |        |        |

### Baseline Forecast Personal Income

#### Z:\Colstrip\REMI Analysis\REMI Workbooks\Clean Power Plan\_final.rwb Regional Simulation 1 - Levels Region = All Regions

Personal Income

| Category                                                                         | Units                            | 2019      | 2020      | 2021      | 2022      | 2023      | 2024      |
|----------------------------------------------------------------------------------|----------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|
| Total Earnings by Place of Work                                                  | Millions of Fixed (2015) Dollars | 29985.958 | 30757.829 | 31505.645 | 32223.824 | 32903.607 | 33562.997 |
| Total Wages and Salaries                                                         | Millions of Fixed (2015) Dollars | 20114.024 | 20637.320 | 21142.074 | 21627.009 | 22086.112 | 22529.996 |
| Supplements to Wages and Salaries                                                | Millions of Fixed (2015) Dollars | 5193.899  | 5328.019  | 5460.182  | 5585.840  | 5707.632  | 5825.257  |
| Employer contributions for employee pension and insurance funds                  | Millions of Fixed (2015) Dollars | 3332.394  | 3417.977  | 3502.800  | 3587.487  | 3668.058  | 3746.938  |
| Employer contributions for government social insurance                           | Millions of Fixed (2015) Dollars | 1861.505  | 1910.042  | 1957.383  | 1998.353  | 2039.574  | 2078.320  |
| Proprietors' income with inventory valuation and capital consumption adjustments | Millions of Fixed (2015) Dollars | 4638.924  | 4748.691  | 4858.307  | 4968.165  | 5067.433  | 5166.283  |
| Less: Contributions for Government Social Insurance                              | Millions of Fixed (2015) Dollars | 3811.539  | 3910.814  | 4007.001  | 4089.104  | 4171.387  | 4248.159  |
| Employee and Self-Employed Contributions for Government Social Insurance         | Millions of Fixed (2015) Dollars | 1950.034  | 2000.773  | 2049.618  | 2090.751  | 2131.813  | 2169.839  |
| Employer contributions for government social insurance                           | Millions of Fixed (2015) Dollars | 1861.505  | 1910.042  | 1957.383  | 1998.353  | 2039.574  | 2078.320  |
| Plus: Adjustment for Residence                                                   | Millions of Fixed (2015) Dollars | 68.792    | 70.108    | 71.685    | 73.508    | 75.486    | 77.547    |
| Gross Inflow                                                                     | Millions of Fixed (2015) Dollars | 726.996   | 744.966   | 762.679   | 780.520   | 797.985   | 815.178   |
| Gross Outflow                                                                    | Millions of Fixed (2015) Dollars | 658.204   | 674.858   | 690.994   | 707.012   | 722.499   | 737.631   |
| Equals: Net Earnings by Place of Residence                                       | Millions of Fixed (2015) Dollars | 26482.144 | 27153.740 | 27815.107 | 28472.633 | 29087.249 | 29687.897 |
| Plus: Property Income                                                            | Millions of Fixed (2015) Dollars | 11025.594 | 11388.722 | 11762.634 | 12143.609 | 12500.024 | 12854.153 |
| Personal Dividend Income                                                         | Millions of Fixed (2015) Dollars | 3980.814  | 4151.609  | 4328.984  | 4511.674  | 4686.000  | 4861.918  |
| Personal Interest Income                                                         | Millions of Fixed (2015) Dollars | 4468.032  | 4609.631  | 4754.898  | 4902.283  | 5039.306  | 5174.685  |
| Rental Income of Persons                                                         | Millions of Fixed (2015) Dollars | 2576.748  | 2627.482  | 2678.752  | 2729.652  | 2774.719  | 2817.549  |
| Plus: Personal Current Transfer Receipts                                         | Millions of Fixed (2015) Dollars | 8768.946  | 9068.821  | 9415.645  | 9876.543  | 10093.535 | 10296.796 |
| Equals: Personal Income                                                          | Millions of Fixed (2015) Dollars | 46276.683 | 47611.284 | 48993.386 | 50492.785 | 51680.808 | 52838.846 |
| Less: Personal current taxes                                                     | Millions of Fixed (2015) Dollars | 5592.118  | 5774.082  | 5968.196  | 6159.630  | 6348.888  | 6543.642  |
| Equals: Disposable personal income                                               | Millions of Fixed (2015) Dollars | 40684.566 | 41837.202 | 43025.190 | 44333.156 | 45331.920 | 46295.204 |

## Baseline Forecast Personal Income

#### Z:\Colstrip\REMI Analysis\REMI Workbooks\Clean Power Plan\_final.rwb

**Regional Simulation 1** – Levels

Region = All Regions

Personal Income

| 2025      | 2026      | 2027      | 2028      | 2029      | 2030      | 2035      | 2045      | 2055      |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| 34227.510 | 34840.852 | 35465.462 | 36083.109 | 36710.553 | 37350.744 | 39387.484 | 44387.898 | 51517.858 |
| 22972.035 | 23377.569 | 23789.651 | 24195.559 | 24607.280 | 25027.135 | 26327.025 | 29586.024 | 34356.567 |
| 5947.069  | 6057.676  | 6169.592  | 6280.336  | 6392.047  | 6505.546  | 6850.807  | 7711.142  | 8961.855  |
| 3824.878  | 3895.632  | 3967.222  | 4038.035  | 4109.452  | 4182.000  | 4402.007  | 4950.507  | 5749.167  |
| 2122.191  | 2162.044  | 2202.370  | 2242.300  | 2282.595  | 2323.546  | 2448.800  | 2760.635  | 3212.688  |
| 5268.971  | 5364.883  | 5464.147  | 5564.425  | 5666.489  | 5771.284  | 6126.397  | 6922.831  | 7926.446  |
| 4335.861  | 4415.334  | 4495.830  | 4575.393  | 4655.630  | 4737.220  | 4983.858  | 5601.580  | 6503.541  |
| 2213.670  | 2253.290  | 2293.460  | 2333.093  | 2373.034  | 2413.674  | 2535.058  | 2840.944  | 3290.853  |
| 2122.191  | 2162.044  | 2202.370  | 2242.300  | 2282.595  | 2323.546  | 2448.800  | 2760.635  | 3212.688  |
| 79.748    | 81.840    | 83.992    | 86.189    | 88.496    | 90.922    | 98.799    | 115.159   | 133.291   |
| 832.122   | 847.687   | 863.416   | 878.944   | 894.519   | 910.397   | 958.305   | 1074.662  | 1243.806  |
| 752.374   | 765.847   | 779.424   | 792.755   | 806.023   | 819.475   | 859.506   | 959.503   | 1110.516  |
| 30284.576 | 30827.216 | 31379.270 | 31926.405 | 32478.955 | 33042.166 | 34763.192 | 38994.675 | 45042.276 |
| 13212.351 | 13547.187 | 13881.449 | 14213.352 | 14543.100 | 14869.174 | 16022.366 | 18941.030 | 23217.594 |
| 5041.833  | 5213.154  | 5386.459  | 5561.044  | 5736.968  | 5913.603  | 6594.072  | 8320.990  | 10842.825 |
| 5310.956  | 5437.460  | 5563.015  | 5686.886  | 5809.141  | 5929.157  | 6337.719  | 7349.048  | 8799.853  |
| 2859.562  | 2896.574  | 2931.976  | 2965.422  | 2996.992  | 3026.414  | 3090.575  | 3270.992  | 3574.915  |
| 10818.188 | 11290.332 | 11673.682 | 12000.600 | 12269.498 | 12487.514 | 13184.205 | 14665.616 | 17347.987 |
| 54315.114 | 55664.735 | 56934.402 | 58140.358 | 59291.554 | 60398.854 | 63969.763 | 72601.322 | 85607.857 |
| 6737.080  | 6917.069  | 7099.977  | 7283.173  | 7468.741  | 7657.301  | 8296.419  | 9918.254  | 12394.245 |
| 47578.034 | 48747.666 | 49834.425 | 50857.185 | 51822.812 | 52741.553 | 55673.344 | 62683.068 | 73213.612 |
|           |           |           |           |           |           |           |           |           |

# Baseline Forecast Output and Demand | Output | Private Non-Farm | Sector Level

Z:\Colstrip\REMI Analysis\REMI Workbooks\Clean Power Plan\_final.rwb

Regional Simulation 1 - Levels

Region = All Regions

| Category                                         | Units                            | 2019      | 2020      | 2021      | 2022      | 2023      | 2024      | 2025      | 2026      |
|--------------------------------------------------|----------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Forestry, Fishing, and Related Activities        | Millions of Fixed (2015) Dollars | 476.131   | 482.612   | 490.016   | 498.342   | 505.551   | 512.894   | 519.731   | 525.602   |
| Mining                                           | Millions of Fixed (2015) Dollars | 6231.591  | 6317.600  | 6422.865  | 6548.536  | 6655.821  | 6761.684  | 6859.104  | 6944.728  |
| Utilities                                        | Millions of Fixed (2015) Dollars | 2160.062  | 2190.234  | 2222.672  | 2258.087  | 2288.843  | 2321.347  | 2353.470  | 2383.119  |
| Construction                                     | Millions of Fixed (2015) Dollars | 6235.765  | 6530.463  | 6783.517  | 6990.182  | 7193.142  | 7401.287  | 7614.009  | 7827.347  |
| Manufacturing                                    | Millions of Fixed (2015) Dollars | 13041.912 | 13267.638 | 13502.544 | 13746.298 | 13996.190 | 14265.483 | 14537.881 | 14800.666 |
| Wholesale Trade                                  | Millions of Fixed (2015) Dollars | 4473.143  | 4601.258  | 4719.511  | 4826.718  | 4943.519  | 5068.853  | 5195.266  | 5317.472  |
| Retail Trade                                     | Millions of Fixed (2015) Dollars | 6994.319  | 7206.828  | 7400.191  | 7574.885  | 7746.448  | 7924.326  | 8102.894  | 8273.280  |
| Transportation and Warehousing                   | Millions of Fixed (2015) Dollars | 4109.113  | 4175.419  | 4242.907  | 4311.324  | 4379.403  | 4454.097  | 4530.148  | 4603.536  |
| Information                                      | Millions of Fixed (2015) Dollars | 2775.758  | 2829.141  | 2884.549  | 2942.451  | 3000.607  | 3062.737  | 3125.563  | 3185.824  |
| Finance and Insurance                            | Millions of Fixed (2015) Dollars | 5871.196  | 6012.869  | 6135.314  | 6238.870  | 6346.308  | 6461.084  | 6578.978  | 6690.013  |
| Real Estate and Rental and Leasing               | Millions of Fixed (2015) Dollars | 6650.748  | 6784.879  | 6915.804  | 7043.543  | 7171.675  | 7305.808  | 7438.835  | 7563.322  |
| Professional, Scientific, and Technical Services | Millions of Fixed (2015) Dollars | 4417.285  | 4535.240  | 4655.787  | 4779.810  | 4901.683  | 5030.847  | 5162.109  | 5290.497  |
| Management of Companies and Enterprises          | Millions of Fixed (2015) Dollars | 442.864   | 454.511   | 466.048   | 477.475   | 489.011   | 501.389   | 513.795   | 525.811   |
| Administrative and Waste Management Services     | Millions of Fixed (2015) Dollars | 1804.299  | 1839.340  | 1872.983  | 1905.408  | 1935.601  | 1967.274  | 1999.069  | 2028.573  |
| Educational Services                             | Millions of Fixed (2015) Dollars | 378.943   | 385.592   | 391.333   | 396.057   | 400.376   | 404.687   | 408.698   | 411.938   |
| Health Care and Social Assistance                | Millions of Fixed (2015) Dollars | 8113.298  | 8300.189  | 8487.763  | 8677.990  | 8864.158  | 9043.176  | 9214.256  | 9373.517  |
| Arts, Entertainment, and Recreation              | Millions of Fixed (2015) Dollars | 900.709   | 913.570   | 926.601   | 939.950   | 953.059   | 966.735   | 980.569   | 993.505   |
| Accommodation and Food Services                  | Millions of Fixed (2015) Dollars | 3947.122  | 4027.730  | 4100.861  | 4167.067  | 4228.088  | 4289.548  | 4349.394  | 4403.335  |
| Other Services, except Public Administration     | Millions of Fixed (2015) Dollars | 2204.067  | 2229.618  | 2252.017  | 2272.101  | 2290.578  | 2309.893  | 2329.874  | 2348.245  |

# Baseline Forecast Output and Demand | Output | Private Non-Farm | Sector Level

Z:\Colstrip\REMI Analysis\REMI Workbooks\Clean Power Plan\_final.rwb

Regional Simulation 1 - Levels

Region = All Regions

| 2027      | 2028      | 2029      | 2030      | 2035      | 2045      | 2055      |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| 530.972   | 536.218   | 541.003   | 545.245   | 560.501   | 593.204   | 611.263   |
| 7024.718  | 7101.907  | 7173.509  | 7238.605  | 7501.544  | 8130.355  | 8760.079  |
| 2412.202  | 2442.527  | 2472.232  | 2501.189  | 2621.660  | 2883.635  | 3171.870  |
| 8047.178  | 8281.049  | 8519.494  | 8763.168  | 10002.681 | 12954.681 | 16500.032 |
| 15063.730 | 15339.530 | 15613.608 | 15885.836 | 17143.892 | 19884.277 | 22798.561 |
| 5439.027  | 5568.134  | 5696.845  | 5825.068  | 6446.681  | 7858.510  | 9507.463  |
| 8438.976  | 8608.962  | 8772.605  | 8931.020  | 9641.210  | 11305.495 | 13386.731 |
| 4678.007  | 4759.196  | 4842.145  | 4926.982  | 5356.243  | 6337.064  | 7419.379  |
| 3245.590  | 3308.303  | 3369.632  | 3429.447  | 3703.432  | 4329.005  | 5076.680  |
| 6800.713  | 6918.249  | 7034.056  | 7149.532  | 7681.844  | 8957.489  | 10560.127 |
| 7684.784  | 7810.836  | 7933.442  | 8052.464  | 8574.241  | 9782.525  | 11246.074 |
| 5419.603  | 5555.856  | 5693.653  | 5832.262  | 6508.191  | 8092.368  | 10028.844 |
| 537.863   | 550.812   | 563.830   | 576.897   | 641.325   | 785.659   | 951.768   |
| 2057.210  | 2087.397  | 2116.733  | 2145.598  | 2272.451  | 2561.136  | 2905.162  |
| 415.100   | 418.100   | 420.591   | 422.987   | 429.010   | 439.159   | 444.316   |
| 9535.429  | 9699.219  | 9861.104  | 10016.685 | 10779.208 | 12728.763 | 15299.522 |
| 1006.172  | 1019.290  | 1032.116  | 1044.687  | 1096.348  | 1219.045  | 1380.192  |
| 4454.513  | 4505.538  | 4553.061  | 4597.360  | 4753.094  | 5112.693  | 5550.279  |
| 2365.799  | 2383.937  | 2401.614  | 2418.991  | 2485.491  | 2646.999  | 2852.309  |
|           |           |           |           |           |           |           |

# Baseline Forecast Output and Demand | Output | Government

Z:\Colstrip\REMI Analysis\REMI Workbooks\Clean Power Plan\_final.rwb

Regional Simulation 1 - Levels

Region = All Regions

| Category                   | Units                            | 2019     | 2020     | 2021     | 2022     | 2023     | 2024     | 2025     | 2026     | 2027     | 2028     |
|----------------------------|----------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| State and Local Government | Millions of Fixed (2015) Dollars | 7796.509 | 7876.591 | 7950.583 | 8017.942 | 8079.366 | 8141.044 | 8199.552 | 8248.822 | 8296.158 | 8344.371 |
| Federal Civilian           | Millions of Fixed (2015) Dollars | 2429.296 | 2425.939 | 2423.885 | 2422.828 | 2420.709 | 2419.850 | 2422.625 | 2425.502 | 2430.497 | 2438.076 |
| Federal Military           | Millions of Fixed (2015) Dollars | 2196.971 | 2202.093 | 2210.075 | 2220.940 | 2226.378 | 2232.357 | 2239.527 | 2245.737 | 2254.318 | 2263.640 |

# Baseline Forecast Output and Demand | Output | Government

Z:\Colstrip\REMI Analysis\REMI Workbooks\Clean Power Plan\_final.rwb

Regional Simulation 1 - Levels

Region = All Regions

| 2029     | 2030     | 2035     | 2045     | 2055     |
|----------|----------|----------|----------|----------|
| 8389.186 | 8431.221 | 8531.033 | 8829.787 | 9424.572 |
| 2448.483 | 2461.944 | 2531.827 | 2703.006 | 2901.848 |
| 2271.824 | 2279.029 | 2271.231 | 2269.594 | 2302.428 |

### **Baseline Forecast**

Compensation and Earnings | Private Non-Farm | Wages and Salaries | Sector Level

Z:\Colstrip\REMI Analysis\REMI Workbooks\Clean Power Plan\_final.rwb

Regional Simulation 1 - Levels

Region = All Regions

| Category                                         | Units                            | 2019     | 2020     | 2021     | 2022     | 2023     | 2024     | 2025     | 2026     |
|--------------------------------------------------|----------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|
| Forestry, Fishing, and Related Activities        | Millions of Fixed (2015) Dollars | 122.301  | 124.330  | 126.507  | 128.829  | 131.207  | 133.477  | 135.635  | 137.412  |
| Mining                                           | Millions of Fixed (2015) Dollars | 776.628  | 791.150  | 805.419  | 819.271  | 831.662  | 842.756  | 853.455  | 862.576  |
| Utilities                                        | Millions of Fixed (2015) Dollars | 219.130  | 222.536  | 226.134  | 230.275  | 233.648  | 236.892  | 240.026  | 242.896  |
| Construction                                     | Millions of Fixed (2015) Dollars | 1536.171 | 1618.626 | 1691.912 | 1754.508 | 1814.670 | 1873.376 | 1933.305 | 1991.526 |
| Manufacturing                                    | Millions of Fixed (2015) Dollars | 880.866  | 904.023  | 929.026  | 956.288  | 983.735  | 1011.205 | 1039.127 | 1065.169 |
| Wholesale Trade                                  | Millions of Fixed (2015) Dollars | 1015.292 | 1049.081 | 1081.058 | 1110.852 | 1141.573 | 1172.598 | 1204.161 | 1233.780 |
| Retail Trade                                     | Millions of Fixed (2015) Dollars | 1714.331 | 1774.481 | 1830.692 | 1882.893 | 1932.311 | 1980.556 | 2029.452 | 2074.515 |
| Transportation and Warehousing                   | Millions of Fixed (2015) Dollars | 773.435  | 788.961  | 804.937  | 821.300  | 836.954  | 852.693  | 868.834  | 883.655  |
| Information                                      | Millions of Fixed (2015) Dollars | 316.461  | 324.248  | 332.313  | 340.690  | 348.222  | 355.803  | 363.651  | 371.057  |
| Finance and Insurance                            | Millions of Fixed (2015) Dollars | 1082.587 | 1115.225 | 1145.342 | 1172.179 | 1198.126 | 1223.723 | 1250.970 | 1275.025 |
| Real Estate and Rental and Leasing               | Millions of Fixed (2015) Dollars | 197.008  | 202.313  | 207.551  | 212.698  | 217.677  | 222.558  | 227.478  | 231.972  |
| Professional, Scientific, and Technical Services | Millions of Fixed (2015) Dollars | 1403.879 | 1447.989 | 1493.851 | 1541.572 | 1586.040 | 1631.011 | 1677.268 | 1721.261 |
| Management of Companies and Enterprises          | Millions of Fixed (2015) Dollars | 173.345  | 178.725  | 184.162  | 189.642  | 194.881  | 200.215  | 205.684  | 210.910  |
| Administrative and Waste Management Services     | Millions of Fixed (2015) Dollars | 561.887  | 575.437  | 588.538  | 601.498  | 613.276  | 624.701  | 636.223  | 646.447  |
| Educational Services                             | Millions of Fixed (2015) Dollars | 172.956  | 176.828  | 180.368  | 183.504  | 186.077  | 188.390  | 190.619  | 192.337  |
| Health Care and Social Assistance                | Millions of Fixed (2015) Dollars | 2674.969 | 2749.063 | 2824.393 | 2901.426 | 2974.247 | 3041.460 | 3106.604 | 3164.746 |
| Arts, Entertainment, and Recreation              | Millions of Fixed (2015) Dollars | 313.721  | 319.377  | 325.270  | 331.428  | 337.185  | 342.691  | 348.308  | 353.315  |
| Accommodation and Food Services                  | Millions of Fixed (2015) Dollars | 893.697  | 916.070  | 936.988  | 956.488  | 973.018  | 988.308  | 1003.466 | 1016.392 |
| Other Services, except Public Administration     | Millions of Fixed (2015) Dollars | 608.981  | 620.536  | 631.043  | 640.712  | 649.136  | 656.621  | 664.211  | 670.622  |
### **Baseline Forecast**

Compensation and Earnings | Private Non-Farm | Wages and Salaries | Sector Level

Z:\Colstrip\REMI Analysis\REMI Workbooks\Clean Power Plan\_final.rwb

Regional Simulation 1 - Levels

Region = All Regions

Sector Level

| 2027 | ,    | 2028     | 2029     | 2030     | 2035     | 2045     | 2055     |
|------|------|----------|----------|----------|----------|----------|----------|
| 139  | .103 | 140.661  | 142.177  | 143.626  | 144.465  | 147.457  | 153.007  |
| 871  | .825 | 879.918  | 888.354  | 897.320  | 910.336  | 954.562  | 1029.411 |
| 245  | .822 | 248.829  | 251.927  | 254.808  | 259.992  | 271.750  | 292.154  |
| 2052 | .356 | 2114.644 | 2179.312 | 2247.010 | 2513.820 | 3147.231 | 3973.114 |
| 1091 | .945 | 1118.523 | 1145.638 | 1173.615 | 1271.695 | 1501.792 | 1794.538 |
| 1263 | .969 | 1294.634 | 1326.032 | 1358.445 | 1470.655 | 1728.894 | 2071.119 |
| 2119 | .516 | 2163.511 | 2207.207 | 2251.359 | 2378.134 | 2688.700 | 3151.104 |
| 899  | .091 | 914.928  | 931.622  | 949.369  | 1009.080 | 1151.125 | 1335.036 |
| 378  | .835 | 386.451  | 394.176  | 402.245  | 426.122  | 482.829  | 563.595  |
| 1300 | .329 | 1325.985 | 1351.525 | 1378.958 | 1460.185 | 1666.555 | 1973.520 |
| 236  | .529 | 241.020  | 245.611  | 250.343  | 263.884  | 296.710  | 344.054  |
| 1766 | .991 | 1812.864 | 1860.908 | 1910.778 | 2087.133 | 2502.066 | 3068.130 |
| 216  | .284 | 221.781  | 227.444  | 233.323  | 254.187  | 300.857  | 361.607  |
| 656  | .667 | 666.779  | 677.008  | 687.402  | 711.950  | 772.390  | 866.328  |
| 194  | .124 | 195.631  | 197.012  | 198.493  | 196.633  | 192.978  | 192.174  |
| 3225 | .217 | 3283.200 | 3342.237 | 3401.397 | 3581.427 | 4076.750 | 4851.265 |
| 358  | .432 | 363.368  | 368.439  | 373.723  | 384.101  | 412.991  | 465.356  |
| 1029 | .243 | 1041.095 | 1052.774 | 1064.540 | 1075.062 | 1111.145 | 1190.986 |
| 676  | .863 | 682.368  | 687.960  | 693.824  | 694.400  | 702.797  | 734.477  |
|      |      |          |          |          |          |          |          |

# Baseline Forecast Population | Four Age Groups | All Races

Z:\Colstrip\REMI Analysis\REMI Workbooks\Clean Power Plan\_final.rwb

Regional Simulation 1 - Levels

**Region = All Regions** 

All Races

| Category   | Units     | 2019    | 2020    | 2021    | 2022    | 2023    | 2024    | 2025    | 2026    | 2027    | 2028    | 2029    | 2030    |
|------------|-----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Ages 0-14  | Thousands | 189.147 | 190.438 | 191.589 | 192.327 | 193.277 | 194.329 | 195.513 | 196.836 | 197.988 | 199.111 | 200.132 | 200.838 |
| Ages 15-24 | Thousands | 120.068 | 119.259 | 119.885 | 120.989 | 121.948 | 122.696 | 123.199 | 123.346 | 123.802 | 124.066 | 124.243 | 124.465 |
| Ages 25-64 | Thousands | 533.241 | 533.997 | 533.774 | 533.453 | 533.051 | 533.052 | 532.901 | 533.199 | 533.932 | 535.122 | 536.701 | 539.116 |
| Ages 65+   | Thousands | 206.811 | 214.049 | 221.030 | 227.988 | 234.664 | 240.695 | 246.663 | 252.111 | 256.726 | 260.748 | 264.108 | 266.465 |
|            |           |         |         |         |         |         |         |         |         |         |         |         |         |

## Baseline Forecast Population | Four Age Groups | All Races

Z:\Colstrip\REMI Analysis\REMI Workbooks\Clean Power Plan\_final.rwb

**Regional Simulation 1** – Levels

Region = All Regions

#### All Races

| 2035    | 2045    | 2055    |
|---------|---------|---------|
| 201.090 | 200.202 | 209.879 |
| 126.247 | 131.877 | 131.622 |
| 556.662 | 586.679 | 607.192 |
| 270.411 | 270.360 | 290.356 |
|         |         |         |

# TSEP Projects Funded History by County

NOTE: Biennial year listed: i.e. 2013 Legislative session is for 2015 Biennium funded projects NOTE: Projects that did not meet award conditions and have had a terminated award are not listed.

| City/Town, County, District              | County                                   | Biennial<br>funded year | Project<br>Type | тs | EP Funds  | Total Project<br>Cost |  |
|------------------------------------------|------------------------------------------|-------------------------|-----------------|----|-----------|-----------------------|--|
| Anaconda Deer Lodge County               |                                          |                         |                 |    |           |                       |  |
| Anaconda Deer Lodge County               | Anaconda Deer<br>Lodge<br>Anaconda/ Deer | 2015 Biennium           | Bridge          | \$ | 312,104   | \$624,209             |  |
| Anaconda/Deer Lodge County               | Lodge                                    | 1995 Biennium           | Water           | \$ | 350,000   | \$4,965,000           |  |
|                                          |                                          |                         | Total           | \$ | 662,104   | \$5,589,209           |  |
| Beaverhead County                        |                                          |                         |                 |    |           |                       |  |
| Beaverhead County                        | Beaverhead                               | 1995 Biennium           | Solid Waste     | \$ | 160,000   | \$320,000             |  |
| Beaverhead County                        | Beaverhead                               | 1997 Biennium           | Bridge          | \$ | 23,000    | \$46,000              |  |
| Beaverhead Co. District (Wisdom, Town of | Beaverhead                               | 2005 Biennium           | Wastewater      | \$ | 500,000   | \$1,266,000           |  |
| Beaverhead County                        | Beaverhead                               | 2007 Biennium           | Bridge          | \$ | 84,886    | \$169,772             |  |
| Beaverhead County                        | Beaverhead                               | 2011 Biennium           | Bridge          | \$ | 290,668   | \$581,336             |  |
| Melrose W & S District                   | Beaverhead                               | 2013 Biennium           | Wastewater      | \$ | 162,000   | \$343,817             |  |
| Beaverhead County                        | Beaverhead                               | 2013 Biennium           | Bridge          | \$ | 426,941   | \$853,882             |  |
|                                          |                                          |                         | Total           | \$ | 1,647,495 | \$3,580,807           |  |
| Big Horn County                          |                                          |                         |                 |    |           |                       |  |
| Crow Tribe                               | Big Horn                                 | 2007 Biennium           | Wastewater      | \$ | 500,000   | \$1,922,000           |  |
| Big Horn County                          | Big Horn                                 | 2007 Biennium           | Bridge          | \$ | 142,500   | \$285,000             |  |
| Crow Tribe (for Crow Agency)             | Big Horn                                 | 2009 Biennium           | Wastewater      | \$ | 750,000   | \$2,604,000           |  |
| Fort Smith W&S District                  | Big Horn                                 | 2011 Biennium           | Water           | \$ | 500,000   | \$1,582,757           |  |
| Hardin, City of                          | Big Horn                                 | 2011 Biennium           | Wastewater      | \$ | 500,000   | \$5,062,712           |  |
| Crow Tribe for Crow Tribe                | Big Horn                                 | 2011 Biennium           | W & WW          | \$ | 750,000   | \$3,973,000           |  |
| Crow Tribe for Crow Tribe                | Big Horn                                 | 2013 Biennium           | Water           | \$ | 750,000   | \$3,205,000           |  |
| Hardin, City of                          | Big Horn                                 | 2013 Biennium           | Water           | \$ | 500,000   | \$2,130,780           |  |
| Lodge Grass, Town of                     | Big Horn                                 | 2015 Biennium           | Wastewater      | \$ | 750,000   | \$3,721,000           |  |
| Big Horn County                          | Big Horn                                 | 2015 Biennium           | Bridge          | \$ | 237,462   | \$474,925             |  |
|                                          |                                          |                         | Total           | \$ | 5,379,962 | \$24,961,174          |  |
| Blaine County                            |                                          |                         |                 |    |           |                       |  |
| Harlem, City of                          | Blaine                                   | 1995 Biennium           | Water           | \$ | 217,300   | \$742,077             |  |
| Chinook, City of                         | Blaine                                   | 1999 Biennium           | Water           | \$ | 313,555   | \$627,110             |  |
| Chinook, City of                         | Blaine                                   | 2005 Biennium           | Wastewater      | \$ | 500,000   | \$3,322,700           |  |
| Blaine County                            | Blaine                                   | 2005 Biennium           | Bridge          | \$ | 322,782   | \$645,564             |  |
| Harlem, City of                          | Blaine                                   | 2009 Biennium           | Water           | \$ | 750,000   | \$2,230,000           |  |
| Blaine County                            | Blaine                                   | 2009 Biennium           | Bridge          | \$ | 617,017   | \$1,234,035           |  |
| Blaine County                            | Blaine                                   | 2011 Biennium           | Bridge          | \$ | 384,160   | \$799,758             |  |
| Blaine County                            | Blaine                                   | 2013 Biennium           | Bridge          | \$ | 434,309   | \$901,890             |  |
| Chinook, City of                         | Blaine                                   | 2015 Biennium           | Water           | \$ | 750,000   | \$2,998,900           |  |
| Harlem, City of                          | Blaine                                   | 2015 Biennium           | Wastewater      | \$ | 625,000   | \$2,363,829           |  |
| Blaine County                            | Blaine                                   | 2015 Biennium           | Bridge          | \$ | 254,000   | \$509,347             |  |
|                                          |                                          |                         | Total           | \$ | 5,168,123 | \$16,375,210          |  |
| Butte - Silver Bow County                |                                          |                         |                 |    |           |                       |  |
| Butte-Silver Bow County                  | Butte Silver Bow                         | 1995 Biennium           | Water           | \$ | 300,000   | \$24,706,000          |  |
| Butte-Silver Bow County                  | Butte Silver Bow                         | 1997 Biennium           | Wastewater      | \$ | 500,000   | \$6,304,485           |  |
| Ramsay County District                   | Butte Silver Bow                         | 2005 Biennium           | Water           | \$ | 255,000   | \$519,000             |  |
| Butte-Silver Bow County                  | Butte Silver Bow                         | 2009 Biennium           | Water           | \$ | 750,000   | \$4,924,431           |  |
|                                          |                                          |                         | Total           | \$ | 1,805,000 | \$36,453,916          |  |

| Carbon County                          |            |               |            |                  |              |
|----------------------------------------|------------|---------------|------------|------------------|--------------|
| Carbon County                          | Carbon     | 1995 Biennium | Bridge     | \$<br>25,000     | \$120,100    |
| Redlodge, City of                      | Carbon     | 2001 Biennium | Wastewater | \$<br>500,000    | \$4,909,000  |
| Carbon County                          | Carbon     | 2007 Biennium | Bridge     | \$<br>97,100     | \$194,200    |
| Red Lodge, City of                     | Carbon     | 2009 Biennium | Water      | \$<br>750,000    | \$3,770,000  |
| Carbon County                          | Carbon     | 2011 Biennium | Bridge     | \$<br>492,915    | \$985,830    |
| Roberts - Carbon Co W & S District     | Carbon     | 2013 Biennium | Wastewater | \$<br>500,000    | \$1,189,632  |
| Joliet, Town of                        | Carbon     | 2015 Biennium | Wastewater | \$<br>154,200    | \$2,388,000  |
| Carbon County                          | Carbon     | 2015 Biennium | Bridge     | \$<br>455,675    | \$911,350    |
|                                        |            |               | Total      | \$<br>2,974,890  | \$14,468,112 |
| Carter County                          |            |               |            |                  |              |
| Ekalaka, Town of                       | Carter     | 2001 Biennium | Wastewater | \$<br>87,200     | \$178,400    |
| Ekalaka, Town of                       | Carter     | 2005 Biennium | Wastewater | \$<br>154,197    | \$435,395    |
| Ekalaka, Town of                       | Carter     | 2009 Biennium | W & WW     | \$<br>706,369    | \$1,412,738  |
|                                        |            |               | Total      | \$<br>947,766    | \$2,026,533  |
| Cascade County                         |            |               |            |                  |              |
| Neihart. Town of                       | Cascade    | 1995 Biennium | Water      | \$<br>544.673    | \$724 673    |
| Neihart Town of                        | Cascade    | 1999 Biennium | Water      | \$<br>261 028    | \$361.028    |
| Cascade Town of                        | Cascade    | 1999 Biennium | Wastewater | \$<br>500,000    | \$2,336,500  |
| Black Fagle District                   | Cascade    | 2005 Biennium | Wastewater | \$<br>214 200    | \$428 400    |
| Upper-Lower River Road District (Casca | de Cascade | 2005 Biennium | W & WW     | \$<br>500,000    | \$3 412 00   |
| Cascade County                         | Cascade    | 2005 Biennium | Bridge     | \$<br>230 840    | \$468 680    |
| Cascade Town of                        | Cascade    | 2007 Biennium | Water      | \$<br>500,000    | \$1 283 500  |
| Upper-Lower River Road District (Casca | de Cascade | 2007 Biennium | W & WW     | \$<br>500,000    | \$2 907 70   |
| Black Fagle Water & Sewer District     | Cascade    | 2009 Biennium | Water      | \$<br>365,000    | \$730,000    |
| Neibart Town of                        | Cascade    | 2009 Biennium | Water      | \$<br>223,000    | \$448.000    |
| Cascade. Town of                       | Cascade    | 2011 Biennium | Water      | \$<br>625,000    | \$1 403 000  |
| Gore Hill Co. Water District           | Cascade    | 2011 Biennium | Water      | \$<br>250,300    | \$895.900    |
| Homestead Acres W&S District           | Cascade    | 2011 Biennium | Water      | \$<br>573 325    | \$1 146 65   |
| Upper & Lower River Rd W&S District    | Cascade    | 2011 Biennium | W & WW     | \$<br>500,000    | \$1 667 60   |
| Brady County W & S District            | Cascade    | 2013 Biennium | Water      | \$<br>750,000    | \$1,657,000  |
| Sun Prairie Village Co W & S District  | Cascade    | 2013 Biennium | Water      | \$<br>625.000    | \$3,576.000  |
| Cascade. Town of                       | Cascade    | 2015 Biennium | Water      | \$<br>750.000    | \$2,069.05   |
| Belt. Town of                          | Cascade    | 2015 Biennium | Wastewater | \$<br>625.000    | \$2,480,205  |
| Vaughn Co WSD                          | Cascade    | 2015 Biennium | Wastewater | \$<br>750.000    | \$1,972.645  |
| South Wind WSD                         | Cascade    | 2015 Biennium | W & WW     | \$<br>750,000    | \$1,974,500  |
|                                        |            |               | Total      | \$<br>10,037,366 | \$31,943,032 |
| Chouteau County                        |            |               |            |                  |              |
| Fort Benton, City of                   | Chouteau   | 1999 Biennium | Water      | \$<br>480,244    | \$1,020,667  |
| Highwood Water & Sewer District        | Chouteau   | 2001 Biennium | Water      | \$<br>400,000    | \$803,560    |
| Geraldine, Town of                     | Chouteau   | 2001 Biennium | Wastewater | \$<br>300,000    | \$811,007    |
| Geraldine, Town of                     | Chouteau   | 2003 Biennium | Water      | \$<br>167,460    | \$335,032    |
| Geraldine, Town of                     | Chouteau   | 2005 Biennium | Water      | \$<br>500,000    | \$1,235,660  |
| Carter Chouteau County W&S District    | Chouteau   | 2007 Biennium | Water      | \$<br>500,000    | \$1,246,600  |
| Carter-Chouteau County Water & Sewer   | D Chouteau | 2009 Biennium | Water      | \$<br>750,000    | \$1,500,000  |
| Tri County Water & Sewer District      | Chouteau   | 2009 Biennium | Water      | \$<br>313,500    | \$627,000    |
| Big Sandy, Town of                     | Chouteau   | 2009 Biennium | Wastewater | \$<br>750,000    | \$2,049,318  |
| Fort Benton, City of                   | Chouteau   | 2009 Biennium | Solid      | \$<br>750,000    | \$1,542,500  |
| Carter Chouteau Co. W&S District       | Chouteau   | 2011 Biennium | Water      | \$<br>750,000    | \$1,600,000  |
| Loma County W&S District               | Chouteau   | 2011 Biennium | Water      | \$<br>750,000    | \$2,235,800  |
| Big Sandy, Town of                     | Chouteau   | 2011 Biennium | Wastewater | \$<br>500,000    | \$2,707,01   |
| Carter Chouteau County W & S District  | Chouteau   | 2013 Biennium | Water      | \$<br>750,000    | \$1,998,000  |
| Fort Benton, City of                   | Chouteau   | 2015 Biennium | Wastewater | \$<br>750,000    | \$4,230,000  |
| Chouteau County                        | Chouteau   | 2015 Biennium | Bridge     | \$<br>178,920    | \$357,840    |
|                                        |            |               | Total      | \$<br>8.590.124  | \$24,299,999 |

**Custer County** 

| Miles City, City of                                     | Custer   | 1999 Biennium | Water      | \$     | 136,000   | \$273,000                  |
|---------------------------------------------------------|----------|---------------|------------|--------|-----------|----------------------------|
| Miles City, City of                                     | Custer   | 2007 Biennium | Water      | \$     | 500,000   | \$2,517,000                |
| Custer County                                           | Custer   | 2009 Biennium | Bridge     | \$     | 63,750    | \$127,500                  |
| Custer County                                           | Custer   | 2013 Biennium | Wastewater | \$     | 750,000   | \$1,998,000                |
| Miles City, City of                                     | Custer   | 2015 Biennium | Wastewater | \$     | 500,000   | \$8,400,800                |
|                                                         |          |               | Total      | \$     | 1,949,750 | \$13,316,300               |
| Daniels County                                          |          |               |            |        |           |                            |
| Scobey, City of                                         | Daniels  | 2005 Biennium | Wastewater | \$     | 500,000   | \$1,936,000                |
|                                                         |          |               | Total      | \$     | 500,000   | \$1,936,000                |
| Dawson County                                           |          |               |            |        |           |                            |
| Glendive, City of                                       | Dawson   | 1999 Biennium | Water      | \$     | 500,000   | \$1,153,918                |
| Richey, Town of                                         | Dawson   | 1999 Biennium | Water      | \$     | 264,340   | \$537,100                  |
| Glendive. City of                                       | Dawson   | 2005 Biennium | Storm      | \$     | 139,133   | \$305.083                  |
| Dawson Co/ WestGlendive                                 | Dawson   | 2015 Biennium | Wastewater | \$     | 750,000   | \$3 047 631                |
| Glopdivo, City of                                       | Dawson   | 2015 Bionnium | Wastowator | ¢      | 750,000   | \$9,970,202                |
| Giendive, City of                                       | Dawson   | 2013 Dienmum  | Total      | \$     | 2,403,473 | \$13,923,124               |
| Fallon County                                           |          |               |            |        |           |                            |
| Fallon Co. North Bakor W&S District                     | Fallon   | 2011 Diamaium | Maatawatar | ¢      | 100.000   | ¢4 705 505                 |
| District Terms of                                       | Fallon   | 2011 Biennium | Wastewater | ф<br>Ф | 120,000   | \$1,785,585                |
| Plevna, I own of                                        | Fallon   | 2015 Biennium | water      | \$     | 500,000   | \$1,100,000                |
|                                                         |          |               | lotal      | \$     | 620,000   | \$2,885,585                |
| Fergus County                                           | _        |               |            |        |           |                            |
| Lewistown, City of                                      | Fergus   | 1995 Biennium | Storm      | \$     | 60,000    | \$165,264                  |
| Lewistown, City of                                      | Fergus   | 1997 Biennium | Water      | \$     | 500,000   | \$6,516,600                |
| Denton, Town of                                         | Fergus   | 2001 Biennium | Wastewater | \$     | 415,000   | \$865,200                  |
| Fergus County                                           | Fergus   | 2009 Biennium | Bridge     | \$     | 238,362   | \$476,724                  |
| Winifred, Town of                                       | Fergus   | 2011 Biennium | Wastewater | \$     | 500,000   | \$1,352,500                |
| Fergus County                                           | Fergus   | 2011 Biennium | Bridge     | \$     | 167,200   | \$335,009                  |
| Fergus County                                           | Fergus   | 2013 Biennium | Bridge     | \$     | 276,157   | \$552,314                  |
| Moore, Town of                                          | Fergus   | 2015 Biennium | Wastewater | \$     | 625,000   | \$1,880,000                |
| Winifred, Town of                                       | Fergus   | 2015 Biennium | Wastewater | \$     | 500.000   | \$2,498,000                |
|                                                         | -        |               | Total      | \$     | 3,281,719 | \$14,641,611               |
| Flathead County                                         |          |               |            |        |           |                            |
| Coram Water & Sewer District                            | Flathead | 1999 Biennium | Water      | \$     | 500 000   | \$1 053 722                |
| Lakeside Water District                                 | Flathead | 1999 Biennium | Water      | \$     | 500,000   | \$1,100,000                |
| Columbia Falls. City of                                 | Flathead | 2001 Biennium | Wastewater | \$     | 500.000   | \$3.277.000                |
| Whitefish City of                                       | Flathead | 2003 Biennium | Wastewater | \$     | 500,000   | \$1 132 690                |
| Ranch County Water District (Flathead Co                | Flathead | 2007 Biennium | Water      | \$     | 500,000   | \$1,050,000                |
| Whitefish, City of<br>Department Mountain River Heighte | Flathead | 2007 Biennium | Water      | \$     | 457,500   | \$915,000                  |
| County Water District                                   | Flathead | 2009 Riennium | Water      | \$     | 191 500   | ¢383 000                   |
| BAE Water & Sower District                              | Flathead | 2000 Diennium | Water      | ¢      | 750,000   | ¢000,000                   |
| Whitefich City of                                       | Flathead | 2009 Diennium | Water      | φ<br>¢ | 750,000   | \$1,000,001<br>\$1,774,490 |
| Columbia Falla Citu of                                  | Flathoad | 2009 Diennium | Watewater  | φ<br>¢ | 750,000   | \$1,774,400                |
| Columbia Fails, City of                                 | Flotbood | 2009 Biennium | Wastewater | ф<br>Ф | 750,000   | \$3,900,000                |
| Whitefich City of                                       | Flathead | 2011 Blennium | water      | Ъ<br>Ф | 500,000   | \$1,212,000                |
|                                                         | Flathead | 2011 Biennium | Wastewater | \$     | 500,000   | \$1,599,650                |
| Flathead County for Bigfork                             | Flathead | 2011 Biennium | Storm      | \$     | 625,000   | \$1,515,000                |
|                                                         |          |               | Total      | \$     | 7,024,000 | \$20,520,593               |
| Gallatin County                                         |          |               |            |        |           |                            |
| Gallatin Co./Rae Subdivision                            | Gallatin | 1995 Biennium | Water      | \$     | 33 245    | \$66 490                   |
| Rae Water & Sewer District (Gallatin Co.)               | Gallatin | 2001 Biennium | Wastewater | \$     | 485 850   | \$971 700                  |
| Willow Creek Sever District                             | Gallatin | 2001 Riennium | Wastewater | \$     | 500.000   | \$1 031 400                |
| Manhattan, Town of                                      | Gallatin | 2003 Riennium | Wastewater | ¢      | 500,000   | \$7,001,400<br>\$7,706 060 |
| Gallatin County                                         | Gallatin |               | Bridgo     | Ψ<br>¢ | 500,000   | ΨZ,120,000<br>\$1 015 400  |
| Manhattan Town of                                       | Gallatin |               | Motor      | φ<br>¢ | 600,000   | \$1,010,400<br>\$2,650,000 |
| wamallan, I uwn ui                                      | Ganaun   |               | water      | φ      | 000,000   | φ∠,00∠,000                 |

| Bozeman, City of                        | Gallatin      | 2011 Biennium | Wastewater  | \$      | 500,000          | \$58,215,000             |
|-----------------------------------------|---------------|---------------|-------------|---------|------------------|--------------------------|
| Bridger Pines Co. W&S District          | Gallatin      | 2011 Biennium | Wastewater  | \$      | 400,000          | \$2,093,500              |
| Gallatin Gateway County W & S District  | Gallatin      | 2013 Biennium | Wastewater  | \$      | 750,000          | \$4,315,000              |
| Hebgen Lake Estates Co W & S District   | Gallatin      | 2013 Biennium | Wastewater  | \$      | 720,000          | \$1,477,448              |
| West Yellowstone/Hebgen Basin Refuge    | Gallatin      | 2013 Biennium | Solid Waste | \$      | 246,563          | \$493,126                |
| Manhattan, Town of                      | Gallatin      | 2015 Biennium | Water       | \$      | 750,000          | \$1,855,000              |
| Amsterdam/Churchill Sewer Dist          | Gallatin      | 2015 Biennium | Wastewater  | \$      | 750,000          | \$3,160,368              |
| Three Forks, City of                    | Gallatin      | 2015 Biennium | Wastewater  | \$      | 750,000          | \$4,529,155              |
| Jordan, Town of                         | Garfield      | 2005 Biennium | Water       | \$      | 459,883          | \$1,228,981              |
| Jordan, Town of                         | Garfield      | 2009 Biennium | Wastewater  | \$      | 700,000          | \$1,422,953              |
|                                         |               |               | Total       | \$      | 8,645,541        | \$87,253,589             |
|                                         |               |               |             |         |                  |                          |
| Glacier County                          | Glaciar       | 1007 Dianaium | Water       | ¢       | 200 555          | ¢747 640                 |
| East Glaciel Water & Sewer District     | Glacier       | 1997 Diennium | Water       | φ<br>¢  | 500,555          | \$747,510                |
| Cut Bank, City of                       | Glacier       | 2001 Biennium | Water       | ф<br>Ф  | 500,000          | \$3,234,000              |
| Browning, Town of/Blackleet Tribe       | Glacier       | 2003 Biennium | Water       | ф<br>Ф  | 500,000          | \$11,210,000<br>¢207,000 |
| Essex water & Sewer District            | Glacier       | 2003 Biennium | vvater      | Þ       | 225,000          | \$827,292                |
| Glacier County                          | Glacier       | 2007 Blennium | Bridge      | Þ       | 500,000          | \$1,880,418              |
| Cut Bank, City of                       | Glacier       | 2009 Biennium | vvater      | Ъ<br>Ф  | 550,000          | \$1,329,000              |
| Cut Bank, City of                       | Glacier       | 2011 Biennium | vvater      | \$      | 500,000          | \$1,100,000              |
| Cut Bank, City of                       | Glacier       | 2015 Biennium | Wastewater  | \$      | 625,000          | \$8,131,000              |
| Glacier County                          | Glacier       | 2015 Biennium | Bridge      | \$      | 281,927          | \$563,854                |
|                                         |               |               | Total       | \$      | 3,988,482        | \$29,023,074             |
| Golden Valley County                    |               |               |             |         |                  |                          |
| Lavina, Town of                         | Golden Valley | 2003 Biennium | Wastewater  | \$      | 483,000          | \$994,000                |
| Ryegate, Town of                        | Golden Valley | 2005 Biennium | Water       | \$      | 478,700          | \$957,449                |
|                                         |               |               | Total       | \$      | 961,700          | \$1,951,449              |
| Cranita County                          |               |               |             |         |                  |                          |
| Philipshurg, Town of                    | Granite       | 2001 Biennium | Water       | ¢       | 121 000          | \$620.253                |
| Drummond Town of                        | Granite       | 2001 Biennium | Wastewater  | Ψ<br>¢  | 202 850          | \$595 880                |
| Philipsburg Town of                     | Granite       | 2001 Biennium | Wastewater  | ¢       | 750,000          | \$6.053.822              |
| Granite County                          | Granite       | 2011 Biennium | Solid Waste | Ψ<br>¢  | 197,000          | \$403,700                |
| Granito County                          | Granite       | 2013 Bionnium | Bridgo      | φ       | 276 409          | \$552 816                |
| Philipsburg Town of                     | Granite       | 2015 Bionnium | Water       | φ       | 550,000          | ¢332,010<br>¢1 120 000   |
| Granita County                          | Granite       | 2015 Biennium | Bridgo      | φ<br>Φ  | 330,000          | \$1,120,000              |
| Granite County                          | Granite       | 2013 Dieninum | Total       | \$      | <b>2,564,162</b> | \$10,107,479             |
|                                         |               |               |             |         |                  |                          |
| Hill County                             | L.11          |               | 10/         | ¢       | 500.000          | ¢4.450.000               |
| Hill County Water District              |               | 1997 Biennium | vvater      | \$<br>• | 500,000          | \$1,150,000              |
| Box Elder Water District                |               | 1999 Blennium | wastewater  | Ъ<br>Ф  | 462,000          | \$929,000                |
| Havre, City of                          |               | 2001 Biennium | vvater      | \$      | 303,747          | \$793,606                |
| Havre, City of                          |               | 2003 Biennium | vvater      | \$<br>• | 500,000          | \$1,043,000              |
| Hill County                             |               | 2005 Biennium | Bridge      | Þ       | 175,803          | \$360,684                |
| Havre, City of                          |               | 2007 Biennium | vvater      | Þ       | 500,000          | \$1,150,000              |
| Rudyard County water and Sewer District |               | 2007 Biennium | vvastewater | Ъ<br>Ф  | 524,503          | \$883,903                |
| Hill County                             |               | 2007 Biennium | Bridge      | Ъ<br>Ф  | 450,750          | \$901,598                |
| Gildiold Co. W&S District               |               | 2011 Blennium | wastewater  | ъ<br>С  | 538,000          | \$1,097,800              |
|                                         |               | 2011 Biennium | Wastewater  | \$<br>• | 319,000          | \$648,000                |
| North Havre County Water District       |               | 2013 Biennium | vvater      | \$<br>• | 590,000          | \$181,250                |
| Hill County                             |               | 2013 Biennium | Bridge      | Ъ<br>¢  | 174,082          | \$348,164                |
| Havre, City of                          |               | 2015 Biennium | vvastewater | ъ<br>Ф  | 500,000          | \$8,966,411              |
| HIII County - N Havre                   | пш            | 2015 Biennium | vvastewater | \$      | 211,500          | \$423,000                |
|                                         |               |               | lotal       | \$      | 5,749,385        | \$18,876,416             |
| Whitehall, Town of                      | Jefferson     | 1997 Biennium | Water       | \$      | 500,000          | \$1,275,000              |
| Whitewater Water & Sewer District       | Jefferson     | 2003 Biennium | Water       | \$      | 500,000          | \$1,062,969              |
| Whitehall, Town of                      | Jefferson     | 2009 Biennium | Wastewater  | \$      | 750,000          | \$3,462,100              |
| Jefferson County                        | Jefferson     | 2009 Biennium | Bridge      | \$      | 295,800          | \$591,600                |
| Jefferson County                        | Jefferson     | 2011 Biennium | Bridge      | \$      | 160,690          | \$321,380                |

| Jefferson County                          | Jefferson     | 2013 Biennium   | Bridge      | \$     | 218 634    | \$437 268                  |
|-------------------------------------------|---------------|-----------------|-------------|--------|------------|----------------------------|
| Boulder City of                           | Jefferson     | 2015 Biennium   | Wastewater  | \$     | 625,000    | \$4 882 000                |
| Jefferson County                          | Jefferson     | 2015 Biennium   | Bridge      | \$     | 381 882    | \$763 764                  |
| Boulder City of                           | Jefferson     | 2001 Biennium   | Water       | ¢<br>¢ | 500,000    | \$1 917 000                |
|                                           |               | 2001 Bioliniani | Total       | \$     | 3.932.006  | \$14.713.081               |
|                                           |               |                 |             | Ŧ      | -,,        | •••••••                    |
| Judith Basin County                       |               |                 |             |        |            |                            |
| Stanford, Town of                         | Judith Basin  | 2003 Biennium   | Wastewater  | \$     | 500,000    | \$1,655,500                |
| Geyser District/Judith Basin County       | Judith Basin  | 2005 Biennium   | Water       | \$     | 330,000    | \$1,249,000                |
| Stanford, Town of                         | Judith Basin  | 2005 Biennium   | Water       | \$     | 500,000    | \$1,936,900                |
| Judith Basin County                       | Judith Basin  | 2009 Biennium   | Bridge      | \$     | 192,215    | \$384,430                  |
| Judith Basin County                       | Judith Basin  | 2015 Biennium   | Bridge      | \$     | 235.211    | \$470,423                  |
|                                           |               |                 | Total       | \$     | 1.757.426  | \$5.696.253                |
|                                           |               |                 |             | ·      | , - , -    |                            |
| Lake County                               |               |                 |             |        |            |                            |
| Ronan, City of                            | Lake          | 1995 Biennium   | Wastewater  | \$     | 100,000    | \$879,662                  |
| Arlee Water & Sewer District              | Lake          | 2001 Biennium   | Wastewater  | \$     | 500,000    | \$2,589,033                |
| Charlo Sewer District                     | Lake          | 2003 Biennium   | Wastewater  | \$     | 500.000    | \$1.520.029                |
| Polson City of                            | Lake          | 2005 Biennium   | Water       | \$     | 500,000    | \$1 236 918                |
| Sheaver's Creek District (Lake Co.)       | Lake          | 2005 Biennium   | Water       | \$     | 500,000    | \$1 948 000                |
| Pablo-I ake County Water & Sewer District | Lake          | 2005 Biennium   | Wastewater  | ¢<br>¢ | 500,000    | \$3 180 654                |
| Lake County Solid Waste District          | Lake          | 2005 Biennium   | Solid Waste | Ψ<br>¢ | 500,000    | \$2 197 000                |
| Woods Bay Homesites Lake County W&S       | Lako          | 2003 Dieninum   | Solid Waste | Ψ      | 300,000    | φ2,197,000                 |
| District                                  | Lake          | 2007 Biennium   | Water       | \$     | 500,000    | \$1,258,125                |
| Big Fork County Water & Sewer District    | Lake          | 2007 Biennium   | Wastewater  | \$     | 460,000    | \$729,100                  |
| St. Ignatius, Town of                     | Lake          | 2007 Biennium   | Wastewater  | \$     | 500,000    | \$3,919,000                |
| Polson, City of                           | Lake          | 2009 Biennium   | Water       | \$     | 750,000    | \$1,072,750                |
| Thompson Falls, City of                   | Lake          | 2009 Biennium   | Water       | \$     | 363,000    | \$735,250                  |
| Bigfork County Water & Sewer District     | Lake          | 2009 Biennium   | Wastewater  | \$     | 750,000    | \$1,949,000                |
| Jette Meadows W&S District                | Lake          | 2011 Biennium   | Water       | \$     | 750,000    | \$2,533,490                |
| Ronan, City of                            | Lake          | 2011 Biennium   | Water       | \$     | 750,000    | \$5,795,000                |
| St. Ignatius, Town of                     | Lake          | 2011 Biennium   | Water       | \$     | 253,000    | \$506,000                  |
| Bigfork Co. W&S District                  | Lake          | 2011 Biennium   | Wastewater  | \$     | 750,000    | \$5,634,000                |
| Bigfork W & S District                    | Lake          | 2013 Biennium   | Water       | \$     | 750,000    | \$2,654,000                |
| Polson, City of                           | Lake          | 2013 Biennium   | Water       | \$     | 625,000    | \$2,414,500                |
| Polson, City of                           | Lake          | 2015 Biennium   | Water       | \$     | 625,000    | \$1,480,620                |
|                                           |               |                 | Total       | \$     | 10,926,000 | \$44,232,131               |
|                                           |               |                 |             |        |            |                            |
| Lewis & Clark County                      | Louis & Clark | 0004 D'         |             | •      | 500.000    | <b>*</b> 4 <b>5</b> 00 000 |
| Augusta Water & Sewer District            | Lewis & Clark | 2001 Biennium   | wastewater  | \$     | 500,000    | \$1,526,000                |
| Helena, City of                           | Lewis & Clark | 1995 Biennium   | vvater      | \$     | 338,633    | \$1,100,271                |
| Lewis and Clark County                    | Lewis & Clark | 1999 Biennium   | Bridge      | \$     | 64,125     | \$258,250                  |
| Helena, City of                           | Lewis & Clark | 2001 Biennium   | Water       | \$     | 500,000    | \$9,200,000                |
| La Casa Grande District (Lewis & Clark Co | Lewis & Clark | 2001 Biennium   | Water       | \$     | 500,000    | \$1,045,000                |
| Lewis and Clark County                    | Lewis & Clark | 2001 Biennium   | Bridge      | \$     | 500,000    | \$1,165,985                |
| Lewis and Clark County                    |               | 2003 Biennium   | Bridge      | \$     | 500,000    | \$1,038,000                |
| Lewis and Clark County                    | Lewis & Clark | 2005 Biennium   | Bridge      | \$     | 170,575    | \$341,150                  |
| Lewis & Clark County                      | Lewis & Clark | 2007 Biennium   | Wastewater  | \$     | 288,757    | \$1,094,506                |
| Lewis & Clark County                      | Lewis & Clark | 2009 Biennium   | Water       | \$     | 596,420    | \$1,404,768                |
| Wolf Creek Co. W&S District               | Lewis & Clark | 2011 Biennium   | Wastewater  | \$     | 750,000    | \$2,254,820                |
| Lewis and Clark County                    | Lewis & Clark | 2011 Biennium   | Bridge      | \$     | 456,628    | \$913,256                  |
| Augusta W & S District                    | Lewis & Clark | 2013 Biennium   | Wastewater  | \$     | 295,000    | \$590,000                  |
| East Helena, City of                      | Lewis & Clark | 2013 Biennium   | Wastewater  | \$     | 750,000    | \$5,081,052                |
| Craig WSD                                 | Lewis & Clark | 2015 Biennium   | Wastewater  | \$     | 750,000    | \$3,332,755                |
| Lewis & Clark Co                          | Lewis & Clark | 2015 Biennium   | Bridge      | \$     | 231,493    | \$447,986                  |
| Helena, City of                           | Lewis& Clark  | 1999 Biennium   | Wastewater  | \$     | 500,000    | \$8,921,367                |
|                                           |               |                 | Total       | \$     | 7,691,631  | \$39,715,166               |
| Liberty County                            |               |                 |             |        |            |                            |
| Chester Town of                           | Liberty       | 2001 Riennium   | Water       | ¢      | 220 150    | ¢110 200                   |
| South Chester County Water District       | Liberty       |                 | Water       | ¢      | 121 000    | \$2440,300                 |
| County Water District                     | LIDOILY       |                 | vvale(      | φ      | 131,000    | <b>ΦZ44,07Z</b>            |

|                                                           |             |                 | Total      | \$       | 351,150   | \$684,372      |
|-----------------------------------------------------------|-------------|-----------------|------------|----------|-----------|----------------|
|                                                           |             |                 |            |          |           |                |
| Lincoln County                                            |             |                 |            |          |           |                |
| Troy, City of                                             | Lincoln     | 1997 Biennium   | Wastewater | \$       | 500,000   | \$4,691,825    |
| Eureka, Town of                                           | Lincoln     | 2003 Biennium   | Water      | \$       | 369,000   | \$791,500      |
| Troy, City of                                             | Lincoln     | 2005 Biennium   | Water      | \$       | 500,000   | \$2,030,800    |
| Libby, City of                                            | Lincoln     | 2005 Biennium   | W & WW     | \$       | 500,000   | \$1,221,275    |
| Libby, City of                                            | Lincoln     | 2007 Biennium   | Wastewater | \$       | 500,000   | \$2,591,000    |
| Em-Kayan Co. W&S District                                 | Lincoln     | 2011 Biennium   | Water      | \$       | 290,619   | \$581,238      |
| Eureka, Town of                                           | Lincoln     | 2011 Biennium   | Water      | \$       | 625,000   | \$1,785,000    |
| Troy, City of                                             | Lincoln     | 2011 Biennium   | Water      | \$       | 715,000   | \$1,536,000    |
| Eureka, Town of                                           | Lincoln     | 2013 Biennium   | Wastewater | \$       | 625,000   | \$2,590,000    |
| Eureka, Town of                                           | Lincoln     | 2015 Biennium   | Water      | \$       | 550,000   | \$1,100,000    |
| Libby, City of                                            | Lincoln     | 2015 Biennium   | Water      | \$       | 750,000   | \$8,797,000    |
|                                                           |             |                 | Total      | \$       | 5,924,619 | \$27,715,638   |
| Madison County                                            |             |                 |            |          |           |                |
| Ennis. Town of                                            | Madison     | 1995 Biennium   | Water      | \$       | 100.000   | \$1,114,600    |
| Twin Bridges, Town of                                     | Madison     | 1999 Biennium   | Water      | \$       | 500.000   | \$1,268,500    |
| Harrison Water & Sewer District                           | Madison     | 2001 Biennium   | Wastewater | \$       | 500.000   | \$1,600,000    |
| Virginia City Town of                                     | Madison     | 2003 Biennium   | Wastewater | \$       | 500,000   | \$1 847 460    |
| Madison County                                            | Madison     | 2005 Biennium   | Bridge     | \$       | 174 529   | \$349.058      |
| Ennis Town of                                             | Madison     | 2007 Biennium   | Wastewater | \$       | 204 894   | \$409 788      |
| Madison County                                            | Madison     | 2007 Biennium   | Bridge     | Ψ<br>¢   | 179 911   | \$359,822      |
| Twin Bridges Town of                                      | Madison     | 2009 Biennium   | Wastewater | Ψ<br>¢   | 750.000   | \$2 942 100    |
| Madison County                                            | Madison     | 2009 Biennium   | Bridge     | \$       | 370 100   | \$740,200      |
| Madison County                                            | Madison     | 2011 Biennium   | Bridge     | ¢<br>¢   | 413 203   | \$826.406      |
| Sheridan Town of                                          | Madison     | 2013 Biennium   | Wastewater | Ψ<br>¢   | 750.000   | \$7 114 400    |
| Madison County                                            | Madison     | 2013 Biennium   | Bridge     | Ψ<br>¢   | 699 931   | \$1 399 862    |
| Madison county                                            | maaloon     | 2010 Dichinidin | Total      | \$       | 5 142 568 | \$19 972 196   |
|                                                           |             |                 | lotar      | Ψ        | 3,142,300 | <i><b></b></i> |
| McCone County                                             |             |                 |            |          |           |                |
| Circle, Town of                                           | McCone      | 1995 Biennium   | Water      | \$       | 370,000   | \$2,842,360    |
| Circle, Town of                                           | McCone      | 2009 Biennium   | Wastewater | \$       | 750,000   | \$1,528,000    |
|                                                           |             |                 | Total      | \$       | 1,120,000 | \$4,370,360    |
| Maanhan County                                            |             |                 |            |          |           |                |
| White Sulphur Springs, City of                            | Meagher     | 2015 Pionnium   | Montowator | ¢        | 460 500   | 000 9902       |
| White Sulphur Springs, City of                            | Weagner     | 2015 Diefinium  | Total      | ۍ<br>د   | 460,500   | \$988,000      |
|                                                           |             |                 | lotar      | Ψ        | 400,000   | \$300,000      |
| Mineral County                                            |             |                 |            |          |           |                |
| Mineral County                                            | Mineral     | 2007 Biennium   | Bridge     | \$       | 80,090    | \$160,180      |
| Superior, Town of                                         | Mineral     | 2009 Biennium   | Water      | \$       | 600,000   | \$1,236,032    |
| Alberton, Town of                                         | Mineral     | 2015 Biennium   | Wastewater | \$       | 292,000   | \$623,000      |
|                                                           |             |                 | Total      | \$       | 972,090   | \$2,019,212    |
| Misserila Country                                         |             |                 |            |          |           |                |
| Missoula County                                           | Missoula    | 1005 Diannium   | W/otor     | ¢        | 154 407   | ¢200.407       |
| Missoula County (Sunset West Subdivisio                   | Missoula    | 1995 Blennium   | vvater     | <b>Ф</b> | 154,107   | \$309,107      |
| Seeley Lake Sewer District                                | Missoula    | 1997 Biennium   | water      | \$       | 464,364   | \$1,321,464    |
| East Missoula Sewer District                              | Missoula    | 1999 Biennium   | Wastewater | \$       | 500,000   | \$4,600,000    |
| Missoula, City of                                         | Missoula    | 1999 Biennium   | Wastewater | \$       | 500,000   | \$3,294,000    |
| Missoula, City of                                         | Missoula    | 2001 Biennium   | Wastewater | \$       | 500,000   | \$5,532,607    |
| Alder Water & Sewer District                              | Missoula    | 2003 Biennium   | Wastewater | \$       | 500,000   | \$1,722,500    |
| Missoula, City of<br>Spring Meadows County Water District | IVIISSOUIA  | 2005 Biennium   | Wastewater | \$       | 500,000   | \$5,825,267    |
| (Missoula Co.)                                            | Missoula    | 2007 Biennium   | Water      | \$       | 487,500   | \$1,024,700    |
| Missoula County                                           | Missoula    | 2007 Biennium   | Bridge     | \$       | 275,172   | \$550,334      |
| Elk Meadows Ranchettes County Water                       | )i Missoula | 2009 Biennium   | Water      | \$       | 410,000   | \$837,630      |
| Goodan-Keil County Water District                         | Missoula    | 2009 Biennium   | Water      | \$       | 532,250   | \$1,079,464    |
| Seeley Lake - Missoula County Water Dis                   | t Missoula  | 2009 Biennium   | Water      | \$       | 750,000   | \$3,831,000    |

| Sunny Meadows Missoula County Water     | Missoula    |                |                      | •                  | 005 000              | <b>\$000 500</b>           |
|-----------------------------------------|-------------|----------------|----------------------|--------------------|----------------------|----------------------------|
| & Sewer District                        | Missoula    | 2009 Biennium  | Water                | \$                 | 325,000              | \$669,500                  |
| Seeley Lake Sewer District              | Missoula    | 2015 Blennium  | vvastewater          | <b>Ф</b>           | 750,000              | \$6,907,000                |
| Missoula County                         | Missoulla   | 2015 Blennium  | Bridge               | <b>Ф</b>           | 480,372              | \$960,745                  |
| Missoula County                         | IVIISSOUIIa | 2005 Biennium  | vvastewater<br>Total | \$                 | 499,335<br>7 628 100 | \$2,105,155                |
|                                         |             |                | Total                | Ψ                  | 7,020,100            | ¥40,570,475                |
| Musselshell County                      |             |                |                      |                    |                      |                            |
| Roundup, City of                        | Musselshell | 1999 Biennium  | Wastewater           | \$                 | 500,000              | \$2,391,187                |
| Melstone, Town of                       | Musselshell | 2011 Biennium  | Water                | \$                 | 625,000              | \$2,307,372                |
| Roundup, City of                        | Musselshell | 2013 Biennium  | Water                | \$                 | 500,000              | \$1,260,000                |
| Musselshell Co WSD                      | Musselshell | 2015 Biennium  | Water                | \$                 | 450,125              | \$900,250                  |
| Roundup, City of                        | Musselshell | 2015 Biennium  | Water                | \$                 | 500,000              | \$1,250,273                |
|                                         |             |                | Total                | \$                 | 2,575,125            | \$8,109,082                |
| Park County                             |             |                |                      |                    |                      |                            |
| Livingston City of                      | Park        | 1995 Biennium  | Storm                | \$                 | 100.000              | \$200.000                  |
| Gardiner-Park County District           | Park        | 1997 Biennium  | Water                | Ψ<br>¢             | 300,000              | \$1 085 000                |
| Gardiner-Park County District           | Park        | 2003 Biennium  | Water                | Ψ<br>¢             | 398 500              | \$798 343                  |
| Park City County Water & Sewer District | Park        | 2003 Biennium  | Wastewater           | Ψ<br>¢             | 500,000              | \$1 579 690                |
| Cooke City-Park County District         | Park        | 2005 Biennium  | Water                | Ψ<br>¢             | 500,000              | \$1,373,030                |
| Cordinar Park County District           | Park        | 2005 Bionnium  | Water                | ¢                  | 500,000              | \$1,502,000<br>\$1,511,800 |
| Gardiner-Park County District           | Park        | 2005 Diennium  | Water                | ф<br>¢             | 300,000              | \$1,511,600<br>\$721,145   |
| Livingston City of                      | Park        | 2011 Diennium  | Solid Mosto          | ф<br>¢             | 500,000              | \$721,143<br>\$1,469,250   |
| Park County                             | Park        | 2011 Biennium  | Bridgo               | ф<br>Ф             | 100,000              | \$1,400,200<br>\$210,000   |
| Fair County                             | I dik       | 2015 Bierinium | Total                | <del>ه</del><br>\$ | 3.266.455            | \$8.966.218                |
|                                         |             |                |                      | Ŧ                  | -,                   | +-,,                       |
| Petroleum County                        |             |                |                      |                    |                      |                            |
| Winnett, Town of                        | Petroleum   | 2015 Biennium  | Wastewater           | \$                 | 750,000              | \$2,304,000                |
|                                         |             |                | Total                | \$                 | 750,000              | \$2,304,000                |
| Phillips County                         |             |                |                      |                    |                      |                            |
| Green Meadow District (Phillips County) | Phillips    | 2005 Biennium  | Water                | \$                 | 112,500              | \$255,400                  |
| Dodson. Town of                         | Phillips    | 2007 Biennium  | Wastewater           | \$                 | 427.500              | \$1.058.862                |
| Malta. City of                          | Phillips    | 2007 Biennium  | Wastewater           | \$                 | 500.000              | \$4.791.000                |
| Malta. City of                          | Phillips    | 2015 Biennium  | Water                | \$                 | 500.000              | \$6.157.500                |
|                                         | ·           |                | Total                | \$                 | 1,540,000            | \$12,262,762               |
| Dandara County                          |             |                |                      |                    |                      |                            |
| Conrad City of                          | Pondera     | 1997 Biennium  | Water                | \$                 | 180 000              | \$360,000                  |
| Valier Town of                          | Pondera     | 1999 Biennium  | Wastewater           | \$                 | 500,000              | \$1 200 000                |
| Conrad. City of                         | Pondera     | 2005 Biennium  | Water                | \$                 | 500.000              | \$3,980,300                |
| Pondera County                          | Pondera     | 2005 Biennium  | Bridge               | \$                 | 137.500              | \$275.000                  |
| Conrad. City of                         | Pondera     | 2007 Biennium  | Wastewater           | \$                 | 500.000              | \$1,697,700                |
| Valier Town of                          | Pondera     | 2007 Biennium  | Wastewater           | \$                 | 500,000              | \$1 919 000                |
| Brady County Water & Sewer District     | Pondera     | 2009 Biennium  | Wastewater           | \$                 | 750,000              | \$3 208 000                |
| Valier. Town of                         | Pondera     | 2011 Biennium  | Water                | \$                 | 625,000              | \$2 165 692                |
| Conrad City of                          | Pondera     | 2015 Biennium  | Water                | \$                 | 625,000              | \$1 479 995                |
| Valier. Town of                         | Pondera     | 2015 Biennium  | Wastewater           | \$                 | 750,000              | \$1 983 930                |
|                                         |             | 2010 Biominan  | Total                | \$                 | 5,067,500            | \$18,269,617               |
|                                         |             |                |                      |                    |                      |                            |
| Powell County                           | Bowell      | 1007 D:- '     | Deidere              | ¢                  | F4 00 4              | <b>#</b> 400.001           |
| Powell County                           | Powell      | 1997 Biennium  | Bridge               | Ъ<br>Ф             | 51,334               | \$123,934                  |
| Powell County                           | Powell      | 2007 Biennium  | Bridge               | Ъ<br>Ф             | 158,348              | \$316,696                  |
| Powell County                           | Powell      | 2009 Biennium  | Bridge               | \$                 | 263,074              | \$526,148                  |
| Powell County                           | Powell      | 2011 Biennium  | Bridge               | \$                 | 304,248              | \$608,496                  |
| Deer Lodge, City of                     | Powell      | 2013 Biennium  | Wastewater           | \$                 | 500,000              | \$4,745,312                |
| Powell County                           | Powell      | 2015 Biennium  | Bridge               | \$                 | 320,940              | \$641,880                  |
|                                         |             |                | lotal                | \$                 | 1,597,944            | \$6,962,466                |

Prairie County

| Terry, Town of                        | Prairie    | 1999 Biennium | Wastewater<br><b>Total</b> | \$<br>\$ | 500,000<br><b>500,000</b> | \$1,495,200<br><b>\$1,495,200</b>       |
|---------------------------------------|------------|---------------|----------------------------|----------|---------------------------|-----------------------------------------|
| Ravalli County                        |            |               |                            |          |                           |                                         |
| Hamilton. City of                     | Ravalli    | 1997 Biennium | Wastewater                 | \$       | 137.632                   | \$662.632                               |
| Hamilton. City of                     | Ravalli    | 1999 Biennium | Wastewater                 | \$       | 500.000                   | \$1.031.000                             |
| Corvallis Sewer District              | Ravalli    | 2001 Biennium | Wastewater                 | \$       | 410.760                   | \$1.034.250                             |
| Florence Water & Sewer District       | Ravalli    | 2003 Biennium | Wastewater                 | \$       | 500,000                   | \$5,440,000                             |
| Hamilton, City of                     | Ravalli    | 2005 Biennium | Water                      | \$       | 500,000                   | \$1,971,787                             |
| Darby, Town of                        | Ravalli    | 2009 Biennium | Water                      | \$       | 750,000                   | \$5,643,111                             |
| Pinesdale, Town of                    | Ravalli    | 2009 Biennium | Water                      | \$       | 750,000                   | \$1,759,819                             |
| Hamilton, City of                     | Ravalli    | 2009 Biennium | Wastewater                 | \$       | 750,000                   | \$3,101,000                             |
| Stevensville, Town of                 | Ravalli    | 2011 Biennium | Water                      | \$       | 500,000                   | \$3,970,000                             |
| Ravalli County                        | Ravalli    | 2011 Biennium | Bridge                     | \$       | 137,193                   | \$274,387                               |
| Ravalli County                        | Ravalli    | 2013 Biennium | Bridge                     | \$       | 142,616                   | \$285,232                               |
| Pinesdale, Town of                    | Ravalli    | 2015 Biennium | Water                      | \$       | 750,000                   | \$2,541,939                             |
| Hamilton, City of                     | Ravalli    | 2015 Biennium | Wastewater                 | \$       | 322,262                   | \$2,301,000                             |
| Stevensville, Town of                 | Ravalli    | 2015 Biennium | Wastewater                 | \$       | 750,000                   | \$3,755,620                             |
| Ravalli County                        | Ravalli    | 2015 Biennium | Bridge                     | \$       | 212,489                   | \$439,978                               |
|                                       |            |               | Total                      | \$       | 7,112,952                 | \$34,211,755                            |
| Richland County                       |            |               |                            |          |                           |                                         |
| Richland County                       | Richland   | 2005 Biennium | Bridge                     | \$       | 351 625                   | \$703 250                               |
| Richland County                       | Richland   | 1995 Biennium | Solid Waste                | \$       | 285,000                   | \$1 180,000                             |
| Fairview Town of                      | Richland   | 1997 Biennium | Water                      | \$       | 500,000                   | \$1,595,000                             |
| Richland County                       | Richland   | 2001 Biennium | Bridge                     | \$       | 181 155                   | \$362,310                               |
| Lambert County Water & Sewer District | Richland   | 2003 Biennium | Water                      | ¢<br>¢   | 403.000                   | \$806.450                               |
| Richland County                       |            | 2003 Biennium | Bridge                     | \$       | 296 500                   | \$593,000                               |
| Richland County                       | Richland   | 2007 Biennium | Bridge                     | \$       | 453 841                   | \$907 682                               |
| Richland Co -Savage 2M                | Richland   | 2015 Biennium | Wastewater                 | Ψ<br>\$  | 750,000                   | \$2 165 000                             |
|                                       |            | 2010 Blomman  | Total                      | \$       | 3,221,121                 | \$8,312,692                             |
| Receively County                      |            |               |                            |          |                           |                                         |
| Froid Town of                         | Roosevelt  | 1005 Pionnium | Water                      | ¢        | 117 000                   | ¢576 600                                |
| Froid, Town of                        | Roosevelt  | 2002 Bioppium | Water                      | ф<br>Ф   | 200,600                   | \$370,000                               |
| Wolf Point City of                    | Roosevelt  | 2005 Bionnium | Wastewater                 | φ<br>¢   | 590,000                   | \$781,200                               |
| Bainville, Town of                    | Roosevelt  | 2009 Biennium | Wastewater                 | φ<br>Φ   | 715,000                   | \$1,900,000                             |
| Danivine, Town of                     | Receiven   | 2009 Dieninum | Total                      | ¢        | 1 722 600                 | \$1,400,000                             |
|                                       |            |               | TOLAT                      | φ        | 1,722,000                 | <b>\$4,732,300</b>                      |
| Rosebud County                        |            |               |                            |          |                           | • · · · · · · · · · · · · · · · · · · · |
| Ashland Water & Sewer District        | Rosebud    | 2003 Biennium | Wastewater                 | \$       | 500,000                   | \$1,467,500                             |
| Forsyth, City of                      | Rosebud    | 2015 Biennium | Wastewater                 | \$       | 500,000                   | \$3,434,700                             |
|                                       |            |               | Total                      | \$       | 1,000,000                 | \$4,902,200                             |
| Sanders County                        |            |               |                            |          |                           |                                         |
| Thompson Falls, City of               | Sanders    | 1997 Biennium | Wastewater                 | \$       | 400,644                   | \$1,477,144                             |
| Thompson Falls, City of               | Sanders    | 2001 Biennium | Water                      | \$       | 500,000                   | \$2,671,300                             |
| Hot Springs, Town of                  | Sanders    | 2003 Biennium | Water                      | \$       | 500,000                   | \$2,843,591                             |
| Hot Springs, Town of                  | Sanders    | 2015 Biennium | Water                      | \$       | 592,550                   | \$1,185,100                             |
|                                       |            |               | Total                      | \$       | 1,993,194                 | \$8,177,135                             |
| Sheridan County                       |            |               |                            |          |                           |                                         |
| Sheridan County                       | Sheridan   | 2005 Biennium | Bridge                     | \$       | 210,775                   | \$421,550                               |
| Sheridan, Town of                     | Sheridan   | 2007 Biennium | Water                      | \$       | 500,000                   | \$1,561,400                             |
|                                       |            |               | Total                      | \$       | 710,775                   | \$1,982,950                             |
| Stillwater County                     |            |               |                            |          |                           |                                         |
| Stillwater County (Reedpoint)         | Stillwater | 1995 Biennium | Wastewater                 | \$       | 200.000                   | \$1,312.645                             |
| Stillwater County                     | Stillwater | 2005 Biennium | Bridge                     | \$       | 500,000                   | \$919,134                               |
| Stillwater County                     | Stillwater | 2007 Biennium | Bridge                     | \$       | 399,853                   | \$799,706                               |
| Stillwater County                     | Stillwater | 2009 Biennium | Bridge                     | \$       | 407,500                   | \$815,000                               |
|                                       |            |               |                            |          |                           |                                         |

| Stillwater County                         | Stillwater  | 2011 Biennium  | Bridae        | \$       | 292.979            | \$585.958                |
|-------------------------------------------|-------------|----------------|---------------|----------|--------------------|--------------------------|
| Stillwater County                         | Stillwater  | 2015 Biennium  | Bridge        | \$       | 205.028            | \$410.056                |
|                                           |             | 2010 210111011 | Total         | \$       | 2,005,360          | \$4,842,499              |
|                                           |             |                |               |          |                    |                          |
| Sweet Grass County                        |             |                |               |          |                    |                          |
| Big Timber, City of                       | Sweet Grass | 2001 Biennium  | Wastewater    | \$       | 500,000            | \$1,796,275              |
| Sweetgrass Community Water & Sewer Di     | Sweet Grass | 2001 Biennium  | Wastewater    | \$       | 213,000            | \$631,000                |
| Sweet Grass County                        | Sweet Grass | 2005 Biennium  | Bridge        | \$       | 235,954            | \$471,908                |
| Sweet Grass County                        | Sweet Grass | 2007 Biennium  | Bridge        | \$       | 144,989            | \$289,978                |
| Sweet Grass County                        | Sweet Grass | 2009 Biennium  | Bridge        | \$       | 151,493            | \$302,986                |
| Sweet Grass Community Co. W&S             |             |                | Ū             |          |                    |                          |
| District                                  | Sweet Grass | 2011 Biennium  | Water         | \$       | 625,000            | \$1,424,740              |
| Sweet Grass County                        | Sweet Grass | 2011 Biennium  | Bridge        | \$       | 93,360             | \$186,720                |
| Sweet Grass County                        | Sweet Grass | 2013 Biennium  | Bridge        | \$       | 156,678            | \$313,357                |
|                                           |             |                | Total         | \$       | 2,120,474          | \$5,416,964              |
| Toton County                              |             |                |               |          |                    |                          |
|                                           | Teton       | 1005 Biennium  | Water         | ¢        | 50.000             | \$118 700                |
| Power/Toton County Water & Sower Distri   | Teton       | 2003 Bioppium  | Water         | φ        | 425,000            | \$835,000                |
| Chotopy City of                           | Teton       | 2003 Bioppium  | Wastowator    | φ        | 420,000<br>500.000 | ¢000,000<br>¢1,529,025   |
| Power Toton County District               | Teton       | 2005 Bioppium  | Water         | φ<br>¢   | 500,000            | \$1,520,955<br>\$030,000 |
| Chotcour, City of                         | Teton       | 2005 Diennium  | Water         | ф<br>Ф   | 500,000            | \$939,900<br>\$2,400,000 |
| Choleau, City of                          | Teton       | 2007 Biennium  | Water         | Ð        | 500,000            | \$2,400,000              |
| Power-Teton County Water & Sewer Distri   | Teton       | 2009 Biennium  | vvater        | <b>Ъ</b> | 604,286            | \$805,714                |
| Fairfield, Iown of                        | Teton       | 2009 Biennium  | Wastewater    | \$       | 750,000            | \$2,391,200              |
| Bynum/Telon Co. W&S District              | Teton       | 2011 Biennium  | Water         | \$       | 567,000            | \$1,450,000              |
| Choteau, City of                          | Teton       | 2011 Biennium  | Wastewater    | \$       | 500,000            | \$1,240,200              |
|                                           | Teton       | 2011 Biennium  | Wastewater    | \$       | 500,000            | \$1,782,000              |
| Fairfield, Town of                        | leton       | 2013 Biennium  | Water         | \$       | 500,000            | \$10,000,000             |
| Dutton, Town of                           | Teton       | 2015 Biennium  | Water         | \$       | 408,500            | \$832,555                |
| Choteau, City of                          | Teton       | 2015 Biennium  | Wastewater    | \$       | 750,000            | \$7,804,370              |
| Fairfield, Town of                        | Teton       | 2015 Biennium  | Wastewater    | \$       | 625,000            | \$2,629,753              |
|                                           |             |                | Total         | \$       | 7,179,786          | \$34,758,327             |
| Toolo County                              |             |                |               |          |                    |                          |
| Shalby City of                            | Toole       | 1005 Pionnium  | Westswater    | ¢        | 266.000            | ¢1 051 200               |
| Shelby, City of                           | Toolo       | 1995 Biennium  | Wastewater    | ¢        | 300,000            | \$1,051,300              |
| Shelby, City of                           | Toole       | 2003 Biennium  | Water         | ¢        | 500,000            | \$1,238,000              |
| Revin, Town of                            | Toole       | 2003 Biennium  | Wastewater    | ¢        | 365,000            | \$770,000                |
| Shelby, City of                           | Toole       | 2009 Biennium  | Water         | ¢        | 750,000            | \$1,500,000              |
|                                           |             | 2011 Blennium  | water         | <b>ծ</b> | 500,000            | \$1,231,000              |
| Shelby, City of                           |             | 2015 Biennium  | Storm         | \$       | 625,000            | \$2,116,799              |
| Sneiby, City of                           | loole       | 2011 Biennium  | Wastewater    | \$       | 625,000            | \$1,500,000              |
|                                           |             |                | Total         | φ        | 3,731,000          | \$9,407,099              |
| Treasure County                           |             |                |               |          |                    |                          |
| Hysham, Town of                           | Treasure    | 1997 Biennium  | Wastewater    | \$       | 127,500            | \$405,000                |
| Hysham, Town of                           | Treasure    | 2007 Biennium  | Water         | \$       | 462,359            | \$924,719                |
|                                           |             |                | Total         | \$       | 589,859            | \$1,329,719              |
|                                           |             |                |               |          |                    |                          |
| Valley County                             | . <i>.</i>  |                |               |          |                    |                          |
| Fort Peck Water District                  | valley      | 1999 Biennium  | Water         | \$       | 500,000            | \$7,300,000              |
| Glasgow, City of                          | Valley      | 1999 Biennium  | Wastewater    | \$       | 500,000            | \$2,048,000              |
| Glasgow, City of                          | Valley      | 2001 Biennium  | Wastewater    | \$       | 500,000            | \$1,600,000              |
| Hinsdale Water & Sewer District           | valley      | 2003 Biennium  | Wastewater    | \$       | 329,000            | \$659,000                |
| Nashua, Town of                           | valley      | 2003 Biennium  | Wastewater    | \$       | 500,000            | \$1,333,935              |
| Glasgow, City of                          | Valley      | 2007 Biennium  | Wastewater    | \$       | 500,000            | \$1,607,900              |
| North Valley County Water & Sewer Distric | Valley      | 2009 Biennium  | Water         | \$       | 750,000            | \$2,092,500              |
| Nashua, Town of                           | Valley      | 2011 Biennium  | Water         | \$       | 421,300            | \$855,820                |
|                                           |             |                | Total         | \$       | 4,000,300          | \$17,497,155             |
| Wheatland County                          |             |                |               |          |                    |                          |
| Judith Gap. Town of                       | Wheatland   | 1999 Riennium  | Wastewater    | \$       | 130.000            | \$630,000                |
| cault cap, rown or                        |             |                | TT GOLO WALCI | Ψ        | 100,000            | φ000,000                 |

| Harlowton, Town of                                       | Wheatland   | 2011 Biennium | Water      | \$<br>500,000   | \$1,408,778  |
|----------------------------------------------------------|-------------|---------------|------------|-----------------|--------------|
| Judith Gap, Town of                                      | Wheatland   | 2011 Biennium | W & WW     | \$<br>750,000   | \$1,668,000  |
| Harlowton                                                | Wheatland   | 2015 Biennium | Wastewater | \$<br>625,000   | \$1,611,000  |
|                                                          |             |               | Total      | \$<br>2,005,000 | \$5,317,778  |
| Wibaux County                                            |             |               |            |                 |              |
| Wibaux, Town of                                          | Wibaux      | 2011 Biennium | Wastewater | \$<br>500,000   | \$1,032,000  |
|                                                          |             |               | Total      | \$<br>500,000   | \$1,032,000  |
| Yellowstone County                                       |             |               |            |                 |              |
| Yellowstone County<br>South Hills Water & Sewer District | Yellowstone | 1995 Biennium | Bridge     | \$<br>95,500    | \$193,110    |
| (Yellowstone Co.)                                        | Yellowstone | 2001 Biennium | Water      | \$<br>500,000   | \$1,035,000  |
| Lockwood Water & Sewer District                          | Yellowstone | 2003 Biennium | Wastewater | \$<br>500,000   | \$8,637,453  |
| Worden-Ballantine Water & Sewer District                 | Yellowstone | 2005 Biennium | Water      | \$<br>500,000   | \$1,474,522  |
| Custer Area-Yellowstone Co. W&S District                 | Yellowstone | 2007 Biennium | Wastewater | \$<br>500,000   | \$1,369,816  |
| Yellowstone County                                       |             | 2003 Biennium | Bridge     | \$<br>300,000   | \$1,043,000  |
| Laurel, City of                                          | Yellowstone | 2007 Biennium | Wastewater | \$<br>500,000   | \$1,033,000  |
| Yellowstone County                                       | Yellowstone | 2007 Biennium | Bridge     | \$<br>187,800   | \$375,600    |
| Laurel, City of                                          | Yellowstone | 2009 Biennium | Wastewater | \$<br>750,000   | \$4,632,500  |
| Yellowstone County                                       | Yellowstone | 2009 Biennium | Bridge     | \$<br>97,079    | \$194,158    |
| Broadview, Town of                                       | Yellowstone | 2011 Biennium | Water      | \$<br>500,000   | \$1,224,000  |
| Laurel, City of                                          | Yellowstone | 2011 Biennium | Water      | \$<br>625,000   | \$3,167,710  |
| Lockwood Sewer District                                  | Yellowstone | 2011 Biennium | Wastewater | \$<br>500,000   | \$8,253,534  |
| Yellowstone County                                       | Yellowstone | 2011 Biennium | Bridge     | \$<br>228,753   | \$457,507    |
| Lockwood W & S District                                  | Yellowstone | 2013 Biennium | Wastewater | \$<br>750,000   | \$17,086,000 |
| Yellowstone County                                       | Yellowstone | 2013 Biennium | Bridge     | \$<br>157,227   | \$314,454    |
| Yellowstone County                                       | Yellowstone | 2015 Biennium | Bridge     | \$<br>218,439   | \$435,878    |
|                                                          |             |               | Total      | \$<br>6,909,798 | \$50,927,242 |